Solve the following initial value problem:(x + y + 1)2 dy = dx,

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

181.

Solve:
cos space left parenthesis straight x plus straight y right parenthesis space dy over dx space equals space 1.

82 Views

 Multiple Choice QuestionsLong Answer Type

182.

Solve:
dy over dx space equals space tan space left parenthesis straight x plus straight y right parenthesis


72 Views

Advertisement

183. Solve the following initial value problem:
(x + y + 1)2 dy = dx, y ( –1) = 0


The given differential equation is
                  (x + y + 1)dy = dx
or                  dy over dx space equals space fraction numerator 1 over denominator left parenthesis straight x plus straight y plus 1 right parenthesis squared end fraction
Put      straight x plus straight y plus 1 space equals space straight t comma space space space space therefore space space space space 1 plus dy over dx space equals dt over dx space space space or space space space dy over dx equals space dt over dx minus 1

therefore space space space space given space equation space becomes space dt over dx minus 1 space equals 1 over straight t squared

therefore space space space space space space space space space space space dt over dx equals 1 plus 1 over straight t squared

or               dt over dx space equals fraction numerator straight t squared plus 1 over denominator straight t squared end fraction
Separating the variables and integrating, we get,
                   integral fraction numerator straight t squared over denominator straight t squared plus 1 end fraction dt space equals space integral dx space space space space or space space space integral open parentheses 1 minus fraction numerator 1 over denominator 1 plus straight t squared end fraction close parentheses space dt space equals space integral 1. space dx
therefore space space space space space space straight t minus tan to the power of negative 1 end exponent straight t space equals space straight x plus straight c space space space space or space space space left parenthesis straight x plus straight y plus 1 right parenthesis space minus space tan to the power of negative 1 end exponent left parenthesis straight x plus straight y plus 1 right parenthesis space equals space straight x plus straight c
therefore space space space space straight y plus 1 minus tan to the power of negative 1 end exponent left parenthesis straight x plus straight y plus 1 right parenthesis space equals space straight c
Now          straight y left parenthesis negative 1 right parenthesis space equals space 0 space space space space space space space space rightwards double arrow space space space space straight y space equals space 0 space space space when space straight x space equals space minus 1
therefore space space space space 0 plus 1 space minus space tan to the power of negative 1 end exponent left parenthesis negative 1 plus 0 plus 1 right parenthesis space equals space straight c space space space space space space rightwards double arrow space space space space 1 minus tan to the power of negative 1 end exponent 0 space equals space straight c
therefore space space space space space space space space space space space space space space 1 minus 0 space equals space straight c space space space space space space space space rightwards double arrow space space space space straight c space equals space 1
therefore space space space space space from space left parenthesis 1 right parenthesis comma space space straight y plus 1 space minus space tan to the power of negative 1 end exponent left parenthesis straight x plus straight y plus 1 right parenthesis space equals space 1
therefore space space tan to the power of negative 1 end exponent left parenthesis straight x plus straight y plus 1 right parenthesis space equals space straight y space space space space space or space space space straight x plus straight y plus 1 space equals space tan space straight y
which is required solution. 
73 Views

Advertisement
184.

Solve the following initial value problem
cos (x + y) dy = dx, y (0) = 0

74 Views

Advertisement
185. For the following differential equation, given below, find  particular solution satisfying the given condition:
open parentheses straight x cubed plus straight x squared plus straight x plus 1 close parentheses dy over dx space equals space 2 straight x squared plus straight x semicolon space space straight y space equals space 1 space space when space straight x space equals space 0
85 Views

186. For the following differential equation, given below, find  particular solution satisfying the given condition:
straight x open parentheses straight x squared minus 1 close parentheses space dy over dx space equals space 1 space semicolon space space straight y space equals space 0 space space when space straight x space equals space 2

80 Views

 Multiple Choice QuestionsShort Answer Type

187. For the following differential equation, given below, find  particular solution satisfying the given condition:
cos space open parentheses dy over dx close parentheses space space equals straight a space space space left parenthesis straight a space element of space straight R right parenthesis semicolon space space space straight y space equals space 1 space space when space straight x space equals space 0


72 Views

188. For the following differential equation, given below, find  particular solution satisfying the given condition:
dy over dx equals straight y space tanx space semicolon space space straight y space equals space 1 space space when space straight x space equals space 0


74 Views

Advertisement

 Multiple Choice QuestionsLong Answer Type

189.

Solve:   straight x squared dy over dx space equals straight x squared plus 5 xy plus 4 straight y squared.

80 Views

190.

Solve the following differential equation:
straight x squared dy over dx space equals space 2 xy plus straight y squared

74 Views

Advertisement