For the following differential equation, given below, find  par

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

181.

Solve:
cos space left parenthesis straight x plus straight y right parenthesis space dy over dx space equals space 1.

82 Views

 Multiple Choice QuestionsLong Answer Type

182.

Solve:
dy over dx space equals space tan space left parenthesis straight x plus straight y right parenthesis


72 Views

183. Solve the following initial value problem:
(x + y + 1)2 dy = dx, y ( –1) = 0
73 Views

184.

Solve the following initial value problem
cos (x + y) dy = dx, y (0) = 0

74 Views

Advertisement
185. For the following differential equation, given below, find  particular solution satisfying the given condition:
open parentheses straight x cubed plus straight x squared plus straight x plus 1 close parentheses dy over dx space equals space 2 straight x squared plus straight x semicolon space space straight y space equals space 1 space space when space straight x space equals space 0
85 Views

Advertisement

186. For the following differential equation, given below, find  particular solution satisfying the given condition:
straight x open parentheses straight x squared minus 1 close parentheses space dy over dx space equals space 1 space semicolon space space straight y space equals space 0 space space when space straight x space equals space 2


The given differential equation is
                   straight x open parentheses straight x squared minus 1 close parentheses dy over dx space equals space 1 space space space or space space dy over dx space equals space fraction numerator 1 over denominator straight x left parenthesis straight x squared minus 1 right parenthesis end fraction
Separating the variables, we get.
                   dy space equals space fraction numerator 1 over denominator straight x left parenthesis straight x minus 1 right parenthesis thin space left parenthesis straight x plus 1 right parenthesis end fraction dx
Integrating,         integral space dy space equals space integral fraction numerator 1 over denominator straight x space left parenthesis straight x minus 1 right parenthesis space left parenthesis straight x plus 1 right parenthesis end fraction space dx
integral dy space equals space integral open square brackets fraction numerator 1 over denominator straight x left parenthesis 0 minus 1 right parenthesis thin space left parenthesis 0 plus 1 right parenthesis end fraction plus fraction numerator 1 over denominator left parenthesis 1 right parenthesis space left parenthesis straight x minus 1 right parenthesis thin space left parenthesis 1 plus 1 right parenthesis end fraction plus fraction numerator 1 over denominator left parenthesis negative 1 right parenthesis thin space left parenthesis negative 1 minus 1 right parenthesis space left parenthesis straight x plus 1 right parenthesis end fraction close square brackets dx
therefore space space space space integral space 1 space dy space equals space integral open square brackets negative 1 over straight x plus fraction numerator 1 over denominator 2 left parenthesis straight x minus 1 right parenthesis end fraction plus fraction numerator 1 over denominator 2 left parenthesis straight x plus 1 right parenthesis end fraction close square brackets dx
therefore space space space straight y space equals space minus log space open vertical bar straight x close vertical bar plus 1 half space log space open vertical bar straight x minus 1 close vertical bar space plus space 1 half log space open vertical bar straight x plus 1 close vertical bar plus straight c space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
Now y = 0  when x = 2
therefore space space space space 0 space equals space minus log space 2 space plus 1 half log space 1 space plus space 1 half log space 3 space plus straight c
rightwards double arrow space space space space 0 space equals space minus space log space 2 plus 1 half cross times 0 plus 1 half log space 3 space plus straight c
rightwards double arrow space 0 space equals space minus 1 half log space 4 plus 1 half space log 3 space plus straight c
rightwards double arrow space space space straight c space equals space minus 1 half left parenthesis log space 3 space minus space log space 4 right parenthesis space space space space rightwards double arrow space space space straight c space equals space minus 1 half log open parentheses 3 over 4 close parentheses
therefore space space from space left parenthesis 1 right parenthesis comma
space space space space space space space straight y space equals space minus log space open vertical bar straight x close vertical bar plus 1 half log space open vertical bar straight x minus 1 close vertical bar plus 1 half log space open vertical bar straight x plus 1 close vertical bar minus 1 half log space open parentheses 3 over 4 close parentheses
or space space space space straight y space equals space 1 half open square brackets log space open vertical bar straight x minus 1 close vertical bar plus log space open vertical bar straight x plus 1 close vertical bar minus 2 space log open vertical bar straight x close vertical bar space close square brackets minus 1 half log space open parentheses 3 over 4 close parentheses
or space space space space straight y space equals space 1 half open square brackets log space open vertical bar space left parenthesis straight x minus 1 right parenthesis thin space left parenthesis straight x plus 1 right parenthesis close vertical bar minus log space open vertical bar straight x close vertical bar squared close square brackets space minus space 1 half log space 3 over 4
or space space space straight y space equals space 1 half log space open vertical bar fraction numerator straight x squared minus 1 over denominator straight x squared end fraction close vertical bar space minus space 1 half log space 3 over 4 space is space the space required space solution. space

80 Views

Advertisement

 Multiple Choice QuestionsShort Answer Type

187. For the following differential equation, given below, find  particular solution satisfying the given condition:
cos space open parentheses dy over dx close parentheses space space equals straight a space space space left parenthesis straight a space element of space straight R right parenthesis semicolon space space space straight y space equals space 1 space space when space straight x space equals space 0


72 Views

188. For the following differential equation, given below, find  particular solution satisfying the given condition:
dy over dx equals straight y space tanx space semicolon space space straight y space equals space 1 space space when space straight x space equals space 0


74 Views

Advertisement

 Multiple Choice QuestionsLong Answer Type

189.

Solve:   straight x squared dy over dx space equals straight x squared plus 5 xy plus 4 straight y squared.

80 Views

190.

Solve the following differential equation:
straight x squared dy over dx space equals space 2 xy plus straight y squared

74 Views

Advertisement