For the following differential equation, given below, find  par

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

181.

Solve:
cos space left parenthesis straight x plus straight y right parenthesis space dy over dx space equals space 1.

82 Views

 Multiple Choice QuestionsLong Answer Type

182.

Solve:
dy over dx space equals space tan space left parenthesis straight x plus straight y right parenthesis


72 Views

183. Solve the following initial value problem:
(x + y + 1)2 dy = dx, y ( –1) = 0
73 Views

184.

Solve the following initial value problem
cos (x + y) dy = dx, y (0) = 0

74 Views

Advertisement
185. For the following differential equation, given below, find  particular solution satisfying the given condition:
open parentheses straight x cubed plus straight x squared plus straight x plus 1 close parentheses dy over dx space equals space 2 straight x squared plus straight x semicolon space space straight y space equals space 1 space space when space straight x space equals space 0
85 Views

186. For the following differential equation, given below, find  particular solution satisfying the given condition:
straight x open parentheses straight x squared minus 1 close parentheses space dy over dx space equals space 1 space semicolon space space straight y space equals space 0 space space when space straight x space equals space 2

80 Views

 Multiple Choice QuestionsShort Answer Type

Advertisement

187. For the following differential equation, given below, find  particular solution satisfying the given condition:
cos space open parentheses dy over dx close parentheses space space equals straight a space space space left parenthesis straight a space element of space straight R right parenthesis semicolon space space space straight y space equals space 1 space space when space straight x space equals space 0



The given differential equation is
                     cos space open parentheses dy over dx close parentheses space equals space straight a space space space space or space space space dy over dx space equals space cos to the power of negative 1 end exponent straight a
therefore space space space space space space space space space dy space equals space cos to the power of negative 1 end exponent straight a. space dx space space space rightwards double arrow space space space space integral space dy space equals space cos to the power of negative 1 end exponent space straight a integral space dx
therefore space space space space space space space space straight y space equals space left parenthesis cos to the power of negative 1 end exponent straight a right parenthesis. space straight x plus space straight c                             ...(1)
Now y = 1 when x = 0
therefore space space space 1 space equals space left parenthesis cos to the power of negative 1 end exponent straight a right parenthesis space. space 0 space plus straight c space rightwards double arrow space space 1 space equals space straight c
therefore space space space space from space left parenthesis 1 right parenthesis comma space space straight y space equals space straight x space cos to the power of negative 1 end exponent straight a plus 1
72 Views

Advertisement
188. For the following differential equation, given below, find  particular solution satisfying the given condition:
dy over dx equals straight y space tanx space semicolon space space straight y space equals space 1 space space when space straight x space equals space 0


74 Views

Advertisement

 Multiple Choice QuestionsLong Answer Type

189.

Solve:   straight x squared dy over dx space equals straight x squared plus 5 xy plus 4 straight y squared.

80 Views

190.

Solve the following differential equation:
straight x squared dy over dx space equals space 2 xy plus straight y squared

74 Views

Advertisement