Find the general solution of the following differential equation

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsLong Answer Type

Advertisement

281. Find the general solution of the following differential equation:
dy over dx plus fraction numerator 4 straight x over denominator straight x squared plus 1 end fraction straight y space equals negative fraction numerator 1 over denominator left parenthesis straight x squared plus 1 right parenthesis cubed end fraction


The given differential equation is
                                          dy over dx plus fraction numerator 4 straight x over denominator straight x squared plus 1 end fraction straight y space equals space minus fraction numerator 1 over denominator left parenthesis straight x squared plus 1 right parenthesis cubed end fraction
Comparing it with dy over dx plus straight P space straight y space equals space straight Q comma space space we space get comma space space space straight P space equals space fraction numerator 4 straight x over denominator straight x squared plus 1 end fraction comma space straight Q space equals negative fraction numerator 1 over denominator left parenthesis straight x squared plus 1 right parenthesis cubed end fraction
                  integral straight P space dx space equals space integral fraction numerator 4 straight x over denominator straight x squared plus 1 end fraction dx space equals space 2 integral fraction numerator 2 straight x over denominator straight x squared plus 1 end fraction dx space equals space 2 space log space left parenthesis straight x squared plus 1 right parenthesis space equals space log space left parenthesis straight x squared plus 1 right parenthesis squared
integral straight e to the power of Pdx space equals space straight e to the power of log space left parenthesis straight x squared plus 1 right parenthesis squared end exponent equals space left parenthesis straight x squared plus 1 right parenthesis squared
therefore  solution of given differential equation is
                                 straight y. space straight e to the power of integral straight P space dx end exponent space equals space integral straight Q. space straight e to the power of integral straight P space dx end exponent space dx space plus straight c
or space space straight y. space left parenthesis straight x squared plus 1 right parenthesis squared space equals space integral fraction numerator negative 1 over denominator left parenthesis straight x squared plus 1 right parenthesis cubed end fraction. space left parenthesis straight x squared plus 1 right parenthesis squared space dx plus straight c
or space space straight y. space open parentheses straight x squared plus 1 close parentheses squared space equals space minus integral fraction numerator 1 over denominator straight x squared plus 1 end fraction dx plus straight c space space or space space space straight y space left parenthesis straight x squared plus 1 right parenthesis squared space equals space minus tan to the power of negative 1 end exponent straight x plus straight c       

71 Views

Advertisement

 Multiple Choice QuestionsShort Answer Type

282.

Solve:  open parentheses straight x plus straight y close parentheses space dy over dx space equals space 1.

73 Views

 Multiple Choice QuestionsLong Answer Type

283.

Solve:
      open parentheses straight x plus 2 straight y cubed close parentheses space straight y apostrophe space equals space straight y comma space space straight y greater than 0

76 Views

 Multiple Choice QuestionsShort Answer Type

284.

Solve:
straight y space dx space plus space left parenthesis straight x minus straight y right parenthesis squared space dy space equals space 0
      

78 Views

Advertisement

 Multiple Choice QuestionsLong Answer Type

285. Find the general solution of the differential equation y dx – (x + 2 y2) dy = 0.
86 Views

286. Solve the following differential equation:
(1 + y2)dx = (tan– 1 y – x) dy
79 Views

287. Solve the following differential equation:
square root of 1 minus straight y squared end root space dx equals left parenthesis sin to the power of negative 1 end exponent straight y space minus straight x right parenthesis space dy
73 Views

 Multiple Choice QuestionsShort Answer Type

288. Find a one parameter family of solutions of each of the following differential equation e–y sec2 y dy = dx + x dy.
74 Views

Advertisement

 Multiple Choice QuestionsLong Answer Type

289. Find the particular solution of the differential equation:
                     dy over dx plus straight y space cotx space equals space 2 straight x plus straight x squared space cotx space space space left parenthesis straight x not equal to 0 right parenthesis
72 Views

290. For the given differential equation, find a particular solution satisfying the given condition:
dy over dx plus 2 straight y space tan space straight x space equals space sin space straight x space colon space straight y space space equals space 0 space space when space straight x space equals space straight pi over 3

                     
75 Views

Advertisement