Solve the following differential equation: from Mathematics Dif

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsLong Answer Type

281. Find the general solution of the following differential equation:
dy over dx plus fraction numerator 4 straight x over denominator straight x squared plus 1 end fraction straight y space equals negative fraction numerator 1 over denominator left parenthesis straight x squared plus 1 right parenthesis cubed end fraction
71 Views

 Multiple Choice QuestionsShort Answer Type

282.

Solve:  open parentheses straight x plus straight y close parentheses space dy over dx space equals space 1.

73 Views

 Multiple Choice QuestionsLong Answer Type

283.

Solve:
      open parentheses straight x plus 2 straight y cubed close parentheses space straight y apostrophe space equals space straight y comma space space straight y greater than 0

76 Views

 Multiple Choice QuestionsShort Answer Type

284.

Solve:
straight y space dx space plus space left parenthesis straight x minus straight y right parenthesis squared space dy space equals space 0
      

78 Views

Advertisement

 Multiple Choice QuestionsLong Answer Type

285. Find the general solution of the differential equation y dx – (x + 2 y2) dy = 0.
86 Views

286. Solve the following differential equation:
(1 + y2)dx = (tan– 1 y – x) dy
79 Views

Advertisement

287. Solve the following differential equation:
square root of 1 minus straight y squared end root space dx equals left parenthesis sin to the power of negative 1 end exponent straight y space minus straight x right parenthesis space dy


The given differential equation is
              square root of 1 minus straight y squared end root space dx space equals space left parenthesis sin to the power of negative 1 end exponent straight y space minus straight x right parenthesis space dy space space space or space space square root of 1 minus straight y squared end root space dy over dx space equals sin to the power of negative 1 end exponent straight y minus straight x
or   dx over dy space equals fraction numerator sin to the power of negative 1 end exponent straight y over denominator square root of 1 minus straight y squared end root end fraction minus fraction numerator 1 over denominator square root of 1 minus straight y squared end root end fraction straight x space space space space or space space space dx over dy plus fraction numerator 1 over denominator square root of 1 minus straight y squared end root end fraction straight x space equals space fraction numerator sin to the power of negative 1 end exponent straight y over denominator square root of 1 minus straight y squared end root end fraction
Comparing it with dy over dx plus Px space equals space straight Q comma we get,
                    straight P space equals space fraction numerator 1 over denominator square root of 1 minus straight y squared end root end fraction comma space space straight Q space equals space fraction numerator sin to the power of negative 1 end exponent straight y over denominator square root of 1 minus straight y squared end root end fraction
integral straight P space dy space equals space integral fraction numerator 1 over denominator square root of 1 minus straight y squared end root end fraction dy space equals space sin to the power of negative 1 end exponent straight y comma space space space therefore space space straight e to the power of integral straight P space dy end exponent space equals space straight e to the power of sin to the power of negative 1 end exponent straight y end exponent
Solution of differential equation is
                    straight x space straight e to the power of integral straight P space dx end exponent space equals space integral straight Q space straight e to the power of integral straight P space dy end exponent dy plus straight c
or        straight x space straight e to the power of sin to the power of negative 1 end exponent straight y end exponent space equals space integral fraction numerator left parenthesis sin to the power of negative 1 end exponent space straight y right parenthesis over denominator square root of 1 minus straight y squared end root end fraction. space straight e to the power of sin to the power of negative 1 end exponent straight y space end exponent dy plus straight c                   ...(1)
Let    straight I space equals space integral fraction numerator open parentheses sin to the power of negative 1 end exponent space straight y close parentheses over denominator square root of 1 minus straight y squared end root end fraction. space straight e to the power of sin to the power of negative 1 end exponent straight y end exponent dy
Put    sin to the power of negative 1 end exponent straight y space equals straight t comma                                      therefore space space space space space fraction numerator 1 over denominator square root of 1 minus straight y squared end root end fraction dy space equals space dt
therefore space space space space space space space space space space space space space space space space straight I space equals space integral straight t. space straight e to the power of straight t space dt
space space space space space space space space space space space space space space space space space space space space space space equals space straight t space straight e to the power of straight t. space integral 1. space straight e to the power of straight t space dt space equals space straight t space straight e to the power of straight t space minus space straight e to the power of straight t space equals space left parenthesis straight t minus 1 right parenthesis space straight e to the power of straight t
space space space space space space space space space space space space space space space space space space space space space space equals space left parenthesis sin to the power of negative 1 end exponent straight y space minus space 1 right parenthesis space straight e to the power of sin to the power of negative 1 end exponent end exponent straight y
space space space space space space space space space space space space space space space space space space space space space space

therefore space space from space left parenthesis 1 right parenthesis comma space space straight x space straight e to the power of sin to the power of negative 1 end exponent straight y end exponent space equals space left parenthesis sin to the power of negative 1 end exponent straight y space minus 1 right parenthesis space straight e to the power of sin to the power of negative 1 end exponent straight y end exponent plus straight c                     ...(2)

Now                   y(0) = 0                    rightwards double arrow space space space space space straight y space equals space 0 space space when space straight x space equals space 0
therefore                      0 space equals space left parenthesis sin to the power of negative 1 end exponent 0 minus 1 right parenthesis space straight e to the power of sin to the power of negative 1 end exponent 0 end exponent plus straight c
rightwards double arrow                      0 space equals space left parenthesis 0 minus 1 right parenthesis space plus space straight c space space space space space space space space rightwards double arrow space space space straight c space equals space 1
therefore     from (2), solution is
              straight x space straight e to the power of sin to the power of negative 1 end exponent straight y end exponent space equals space left parenthesis sin to the power of negative 1 end exponent straight y space minus space 1 right parenthesis space space straight e to the power of sin to the power of negative 1 end exponent straight y end exponent plus 1
or      straight x equals space sin to the power of negative 1 end exponent straight y space minus space 1 plus space straight e to the power of negative sin to the power of negative 1 end exponent straight y end exponent space space space space space space space space or space space space space straight x plus 1 minus space sin to the power of negative 1 end exponent straight y space equals space straight e to the power of negative sin to the power of negative 1 end exponent straight y end exponent

73 Views

Advertisement

 Multiple Choice QuestionsShort Answer Type

288. Find a one parameter family of solutions of each of the following differential equation e–y sec2 y dy = dx + x dy.
74 Views

Advertisement

 Multiple Choice QuestionsLong Answer Type

289. Find the particular solution of the differential equation:
                     dy over dx plus straight y space cotx space equals space 2 straight x plus straight x squared space cotx space space space left parenthesis straight x not equal to 0 right parenthesis
72 Views

290. For the given differential equation, find a particular solution satisfying the given condition:
dy over dx plus 2 straight y space tan space straight x space equals space sin space straight x space colon space straight y space space equals space 0 space space when space straight x space equals space straight pi over 3

                     
75 Views

Advertisement