Find the general solution of the differential equation y dx –

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsLong Answer Type

281. Find the general solution of the following differential equation:
dy over dx plus fraction numerator 4 straight x over denominator straight x squared plus 1 end fraction straight y space equals negative fraction numerator 1 over denominator left parenthesis straight x squared plus 1 right parenthesis cubed end fraction
71 Views

 Multiple Choice QuestionsShort Answer Type

282.

Solve:  open parentheses straight x plus straight y close parentheses space dy over dx space equals space 1.

73 Views

 Multiple Choice QuestionsLong Answer Type

283.

Solve:
      open parentheses straight x plus 2 straight y cubed close parentheses space straight y apostrophe space equals space straight y comma space space straight y greater than 0

76 Views

 Multiple Choice QuestionsShort Answer Type

284.

Solve:
straight y space dx space plus space left parenthesis straight x minus straight y right parenthesis squared space dy space equals space 0
      

78 Views

Advertisement

 Multiple Choice QuestionsLong Answer Type

Advertisement

285. Find the general solution of the differential equation y dx – (x + 2 y2) dy = 0.


 The given differential equation is
       y dx – (x + 2 y2) dy = 0
 or    straight y dx over dy minus straight x minus 2 straight y squared space equals space 0 space space space space or space space space straight y dx over dy minus straight x space equals space 2 straight y squared
or    dx over dy minus 1 over straight y straight x space equals space 2 straight y
Comparing it with dx over dy plus Px space equals space straight Q comma space space we space get comma space space straight P space equals space minus 1 over straight y comma space space straight Q space equals space 2 straight y

therefore space space space space integral space straight P space dy space equals space minus integral 1 over straight y dy space equals space minus log space straight y
space space space space space space space space straight e to the power of integral straight P space dy end exponent space equals space straight e to the power of negative log space straight y end exponent space equals space straight e to the power of log space straight y to the power of negative 1 end exponent end exponent space equals space straight y to the power of negative 1 end exponent space equals space 1 over straight y
Solution of differential equation is
                  xe to the power of integral straight P space dy end exponent space equals space integral straight Q space straight e to the power of integral straight P space dy end exponent dy space plus space straight c
or       straight x. space 1 over straight y space equals space integral space 2 straight y. space 1 over straight y dy plus straight c
or         straight x over straight y space equals space 2 space integral space 1 space dy space plus straight c space space space or space space space straight x over straight y space equals space 2 straight y plus straight c
or      straight x equals space 2 straight y squared plus straight c space straight y space is space the space required space solution. space                
86 Views

Advertisement
286. Solve the following differential equation:
(1 + y2)dx = (tan– 1 y – x) dy
79 Views

287. Solve the following differential equation:
square root of 1 minus straight y squared end root space dx equals left parenthesis sin to the power of negative 1 end exponent straight y space minus straight x right parenthesis space dy
73 Views

 Multiple Choice QuestionsShort Answer Type

288. Find a one parameter family of solutions of each of the following differential equation e–y sec2 y dy = dx + x dy.
74 Views

Advertisement

 Multiple Choice QuestionsLong Answer Type

289. Find the particular solution of the differential equation:
                     dy over dx plus straight y space cotx space equals space 2 straight x plus straight x squared space cotx space space space left parenthesis straight x not equal to 0 right parenthesis
72 Views

290. For the given differential equation, find a particular solution satisfying the given condition:
dy over dx plus 2 straight y space tan space straight x space equals space sin space straight x space colon space straight y space space equals space 0 space space when space straight x space equals space straight pi over 3

                     
75 Views

Advertisement