For the given differential equation, find a particular solution

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsLong Answer Type

291. For the given differential equation, find a particular solution satisfying the given condition:
   left parenthesis 1 plus straight x squared right parenthesis space dy over dx space plus space 2 space straight x space straight y space space equals space fraction numerator 1 over denominator 1 plus straight x squared end fraction semicolon space straight y space equals space 0 space space when space straight x space equals space 1


                     
77 Views

Advertisement

292. For the given differential equation, find a particular solution satisfying the given condition:
              dy over dx minus 3 space straight y space cotx space equals space sin space 2 straight x space colon space space straight y space equals space 2 space space when space space straight x space equals space straight pi over 2
   


                     


The given differential equation is
                         dy over dx minus 3 straight y space cotx space equals space sin space 2 straight x
Comparing it with dy over dx plus Py space equals straight Q comma space we space get comma space space straight P space equals space minus 3 space cotx space comma space space straight Q space equals space sin space 2 straight x
                integral straight P space dx space equals space minus 3 integral cot space straight x space dx space equals space minus 3 space log space sinx
therefore space space straight e to the power of integral straight P space dx end exponent space equals space straight e to the power of negative 3 space log space sinx end exponent space equals space straight e to the power of log space left parenthesis sinx right parenthesis cubed end exponent space equals space left parenthesis sin space straight x right parenthesis to the power of negative 3 end exponent space equals fraction numerator 1 over denominator sin cubed straight x end fraction
therefore     solution of given equation is 
              straight y. space straight e to the power of integral straight P space dx end exponent space equals space integral straight Q. space straight e to the power of integral straight P space dx end exponent dx plus straight c
or  straight y. space fraction numerator 1 over denominator sin space cubed straight x end fraction space equals space integral sin space 2 straight x. space 1 over sin to the power of 3 straight x end exponent dx plus space straight c
or    fraction numerator straight y over denominator sin cubed straight x end fraction space equals space 2 space integral fraction numerator cosx over denominator sin squared straight x end fraction dx plus straight c
or     fraction numerator straight y over denominator sin cubed straight x end fraction space equals space 2 space integral left parenthesis sinx right parenthesis to the power of negative 2 end exponent space cosx space dx space plus space straight c
or      fraction numerator straight y over denominator sin cubed straight x end fraction space equals 2 fraction numerator left parenthesis sin space straight x right parenthesis to the power of negative 1 end exponent over denominator negative 1 end fraction plus straight c
or      fraction numerator straight y over denominator sin cubed straight x end fraction space equals space minus fraction numerator 2 over denominator sin space straight x end fraction plus straight c
or       straight y space equals space minus 2 space sin squared straight x plus space straight c space sin cubed straight x                                     ...(1)
Initially,   y = 2  when   straight x equals space straight pi over 2
therefore              2 space equals space minus 2 sin squared straight pi over 2 plus straight c space sin cubed. space straight pi over 2
rightwards double arrow            2 space equals space minus 2 plus straight c                                       open square brackets because space space sin space straight pi over 2 space equals space 1 close square brackets
rightwards double arrow      c = 4
Putting c = 4 in (1), we get,
                       straight y space equals negative 2 space sin squared straight x plus 4 space sin cubed straight x comma space which space is space required space solution. space
          

76 Views

Advertisement
293. Find a particular solution of the differential equation:
                   dy over dx plus straight y space cotx space equals space 4 straight x
cosec space straight x space left parenthesis straight x not equal to 0 right parenthesis comma space space given space that space straight y space equals space 0 space space space when space straight x space equals space straight pi over 2.

77 Views

294. Find a particular solution of the differential equation left parenthesis straight x plus 1 right parenthesis space dy over dx space equals space 2 straight e to the power of negative straight y end exponent minus 1 comma space space given that y = 0,  when x = 0.
73 Views

Advertisement
295. Solve the differential equation, given that y = 1 where x = 2
straight x dy over dx plus straight y space equals space straight x cubed.

71 Views

296. Find the equation of a curve passing through the point (0, 1). If the slope of the tangent to the curve at any point (x, y) is equal to the sum of x coordinate (abscissa) and the product of the x coordinate and y coordinate (ordinate) of that point.
74 Views

297. Find the equation of a curve passing through the origin given that the slope of the tangent to the curve at any point (x, y) is equal to the sum of the coordinates of the point.
74 Views

 Multiple Choice QuestionsShort Answer Type

298.

The integrating factor of the differential equation straight x dy over dx minus straight y space equals space 2 straight x squared is

83 Views

Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

299.

The integrating factor of the differential equation:
left parenthesis 1 minus straight y squared right parenthesis dx over dy plus straight y space straight x space equals space straight a space straight y space space left parenthesis negative 1 less than straight y less than 1 right parenthesis

  • fraction numerator 1 over denominator straight y squared minus 1 end fraction
  • fraction numerator 1 over denominator square root of straight y squared minus 1 end root end fraction
  • fraction numerator 1 over denominator 1 minus straight y squared end fraction
  • fraction numerator 1 over denominator 1 minus straight y squared end fraction
79 Views

300. The general solution of a differential equation of the type dx over dy plus straight P subscript 1 straight x space equals space straight Q subscript 1 is 
  • straight y space straight e to the power of integral straight P subscript 1 dy end exponent space equals space integral space open parentheses straight Q subscript 1 space straight e to the power of integral straight P subscript 1 dy end exponent close parentheses space dy plus straight C
  • straight y. space straight e to the power of integral straight P subscript 1 dx end exponent space equals space integral space open parentheses straight Q subscript 1 space straight e to the power of integral straight P subscript 1 dx end exponent close parentheses dx plus straight C
  • straight x. straight e to the power of integral straight P subscript 1 dy end exponent space equals space integral open parentheses straight Q subscript 1 straight e to the power of integral straight P subscript 1 dy end exponent close parentheses dy plus straight C
  • straight x. straight e to the power of integral straight P subscript 1 dy end exponent space equals space integral open parentheses straight Q subscript 1 straight e to the power of integral straight P subscript 1 dy end exponent close parentheses dy plus straight C
87 Views

Advertisement