Find the equation of a curve passing through the point (0, 1). I

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsLong Answer Type

291. For the given differential equation, find a particular solution satisfying the given condition:
   left parenthesis 1 plus straight x squared right parenthesis space dy over dx space plus space 2 space straight x space straight y space space equals space fraction numerator 1 over denominator 1 plus straight x squared end fraction semicolon space straight y space equals space 0 space space when space straight x space equals space 1


                     
77 Views

292. For the given differential equation, find a particular solution satisfying the given condition:
              dy over dx minus 3 space straight y space cotx space equals space sin space 2 straight x space colon space space straight y space equals space 2 space space when space space straight x space equals space straight pi over 2
   


                     
76 Views

293. Find a particular solution of the differential equation:
                   dy over dx plus straight y space cotx space equals space 4 straight x
cosec space straight x space left parenthesis straight x not equal to 0 right parenthesis comma space space given space that space straight y space equals space 0 space space space when space straight x space equals space straight pi over 2.

77 Views

294. Find a particular solution of the differential equation left parenthesis straight x plus 1 right parenthesis space dy over dx space equals space 2 straight e to the power of negative straight y end exponent minus 1 comma space space given that y = 0,  when x = 0.
73 Views

Advertisement
295. Solve the differential equation, given that y = 1 where x = 2
straight x dy over dx plus straight y space equals space straight x cubed.

71 Views

Advertisement

296. Find the equation of a curve passing through the point (0, 1). If the slope of the tangent to the curve at any point (x, y) is equal to the sum of x coordinate (abscissa) and the product of the x coordinate and y coordinate (ordinate) of that point.


Let y = f (x) be equation of curve.
 Now dy over dx is the slope of the tangent to the curve at point (x, y)
From the given condition,
                     dx over dy space equals space straight x plus xy        or         dy over dx minus straight x space straight y space equals space straight x
Comparing dy over dx plus Py space equals space straight Q with dy over dx minus straight x space straight y space equals space straight x comma space we get,  P = -x,  Q = x
therefore space space space space space space space integral straight P space dx space equals negative integral straight x space dx space equals space minus straight x squared over 2 comma space space space straight e to the power of integral straight P space dx end exponent space equals space straight e to the power of negative straight x squared over 2 end exponent
Solution of differential equation is
                 straight y space straight e to the power of integral straight P space dx end exponent space equals space integral straight Q space straight e to the power of integral straight P space dx end exponent dx plus straight c
or        straight y space straight e to the power of negative straight x squared over 2 end exponent space equals space integral space straight x space straight e to the power of negative straight x squared over 2 end exponent dx plus straight c                               ...(1)
Let                   straight I space equals space integral space straight x space space straight e to the power of negative straight x squared over 2 end exponent dx plus straight c
Put negative straight x squared over 2 space equals space straight t comma space space space space therefore space space space space space space minus straight x space dx space space equals space dt space space space space rightwards double arrow space space space space straight x space dx space equals space minus dt
therefore                         straight I space equals space minus integral straight e to the power of straight t dt space equals space minus straight e to the power of straight t space equals space minus straight e to the power of negative straight x squared over 2 end exponent
therefore                       straight y space straight e to the power of negative straight x squared over 2 end exponent space equals space minus straight e to the power of negative straight x squared over 2 end exponent plus straight c
or                straight y space equals negative 1 plus space straight c space straight e to the power of straight x squared over 2 end exponent                              ...(2)
Since the curve passes through (0, 1)
therefore                       straight I space equals space minus 1 plus space straight c space straight e to the power of 0 space space space space rightwards double arrow space space space 2 space equals space straight c
therefore        from (2),   straight y equals negative 1 plus 2 space straight e to the power of straight x squared over 2 end exponent
or                 straight y plus 1 space equals space 2 space straight e to the power of straight x squared over 2 end exponent, which is required equation of curve. 

74 Views

Advertisement
297. Find the equation of a curve passing through the origin given that the slope of the tangent to the curve at any point (x, y) is equal to the sum of the coordinates of the point.
74 Views

 Multiple Choice QuestionsShort Answer Type

298.

The integrating factor of the differential equation straight x dy over dx minus straight y space equals space 2 straight x squared is

83 Views

Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

299.

The integrating factor of the differential equation:
left parenthesis 1 minus straight y squared right parenthesis dx over dy plus straight y space straight x space equals space straight a space straight y space space left parenthesis negative 1 less than straight y less than 1 right parenthesis

  • fraction numerator 1 over denominator straight y squared minus 1 end fraction
  • fraction numerator 1 over denominator square root of straight y squared minus 1 end root end fraction
  • fraction numerator 1 over denominator 1 minus straight y squared end fraction
  • fraction numerator 1 over denominator 1 minus straight y squared end fraction
79 Views

300. The general solution of a differential equation of the type dx over dy plus straight P subscript 1 straight x space equals space straight Q subscript 1 is 
  • straight y space straight e to the power of integral straight P subscript 1 dy end exponent space equals space integral space open parentheses straight Q subscript 1 space straight e to the power of integral straight P subscript 1 dy end exponent close parentheses space dy plus straight C
  • straight y. space straight e to the power of integral straight P subscript 1 dx end exponent space equals space integral space open parentheses straight Q subscript 1 space straight e to the power of integral straight P subscript 1 dx end exponent close parentheses dx plus straight C
  • straight x. straight e to the power of integral straight P subscript 1 dy end exponent space equals space integral open parentheses straight Q subscript 1 straight e to the power of integral straight P subscript 1 dy end exponent close parentheses dy plus straight C
  • straight x. straight e to the power of integral straight P subscript 1 dy end exponent space equals space integral open parentheses straight Q subscript 1 straight e to the power of integral straight P subscript 1 dy end exponent close parentheses dy plus straight C
87 Views

Advertisement