The particular solution of the differential equationy1 +&nbs

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

541.

The differential equation of the family of circles touching Y-axis at the origin is

  • x2 + y2dydx - 2xy = 0

  • x2 - y2 + 2xydydx = 0

  • x2 - y2dydx - 2xy = 0

  • x2 + y2dydx + 2xy = 0


542.

The degree and order of the differential equation 1 + dydx373 = 7d2ydx2 respectively are

  • 3 and 7

  • 3 and 2

  • 7 and 3

  • 2 and 3


Advertisement

543.

The particular solution of the differential equation

y1 + logxdxdy - xlogx = 0, when, x = e, y = e2 is

  • y = exlog(x)

  • ey = xlog(x)

  • xy = elog(x)

  • ylog(x) = ex


A.

y = exlog(x)

Given, differential equation is y1 + logxdxdy - xlogx = 0     1 + logxdxxlogx = dyy 1xlogx + 1xdx = 1ydyOn integrating both sides, we get

1xlogx + 1xdx = 1ydyPut logx = t   1xdx = dt 1tdt + 1xdx = 1ydy    logt + logx = logy + logc  logtx = logyc         tx = yc xlogx = ycWhen     x = e and y = e2 eloge = e2c  e × 1 = e2c          c = 1e xlogx = ye         y = exlogx


Advertisement
544.

If sinx  is the integrating factor (IF) of the linear differential equation dydx + Py = Q, then P is

  • logsinx

  • cosx

  • tanx

  • cotx


Advertisement
545.

The solution of the differential equation

dydx = tanyx + yx is

  • cosyx = cx

  • sinyx = cx

  • cosyx = cy

  • sinyx = cy


546.

The differential equation of all parabolas whose axis is Y-axis, is

  • xd2ydx2 - dydx = 0

  • xd2ydx2 + dydx = 0

  • d2ydx2 - y = 0

  • d2ydx2 - dydx = 0


547.

The particular solution of the differential equation xdy + 2ydx = 0, when x = 2, y = 1 is

  • xy = 4

  • x2y = 4

  • xy2 = 4

  • x2y2 = 4


548.

The general solution of the equation dydx = y2 - x2yx + 1 is

  • y2 = (1 + x)log(1 + x) - c

  • y2 = 1 + xlogc1 - x - 1

  • y2 = 1 - xlogc1 - x - 1

  • y2 = 1 + xlogc1 + x - 1


Advertisement
549.

The general solution of the differential equation dydx + sinx + y2 = sinx - y2 is

  • logetany2 = - 2sinx2 +C

  • logetany4 = 2sinx2 +C

  • logetany2 = - 2sinx2 +C

  • logetany4 = - 2sinx2 +C


550.

The function y specified implicitly by the relation 0yetdt + 0xcostdt = 0 satisfies the differential equation

  • e2yd2ydx2 + dydx2 = sinx

  • eyd2ydx2 + dydx2 = sin2x

  • ey2d2ydx2 + dydx2 = sinx

  • eyd2ydx2 + dydx2 = sinx


Advertisement