The solution of the differential equationdydx = tanyx&n

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

541.

The differential equation of the family of circles touching Y-axis at the origin is

  • x2 + y2dydx - 2xy = 0

  • x2 - y2 + 2xydydx = 0

  • x2 - y2dydx - 2xy = 0

  • x2 + y2dydx + 2xy = 0


542.

The degree and order of the differential equation 1 + dydx373 = 7d2ydx2 respectively are

  • 3 and 7

  • 3 and 2

  • 7 and 3

  • 2 and 3


543.

The particular solution of the differential equation

y1 + logxdxdy - xlogx = 0, when, x = e, y = e2 is

  • y = exlog(x)

  • ey = xlog(x)

  • xy = elog(x)

  • ylog(x) = ex


544.

If sinx  is the integrating factor (IF) of the linear differential equation dydx + Py = Q, then P is

  • logsinx

  • cosx

  • tanx

  • cotx


Advertisement
Advertisement

545.

The solution of the differential equation

dydx = tanyx + yx is

  • cosyx = cx

  • sinyx = cx

  • cosyx = cy

  • sinyx = cy


B.

sinyx = cx

Given, dydx = tanyx + yx      ...iClearly, the given differential equation is homogeneousOn putting, y = Vx           dydx = V + xdVdx in Eq.(i), we get           dydx = V + xdVdx = tanV + V         xdVdx = tanV 1tanVdV = 1xdxOn integrating both sides, we get

   1tanVdV = 1xdx cotVdV = logx + logc  logsinx = logx + logc  logsinV = logxc         sinV = xc        sinyx = cx


Advertisement
546.

The differential equation of all parabolas whose axis is Y-axis, is

  • xd2ydx2 - dydx = 0

  • xd2ydx2 + dydx = 0

  • d2ydx2 - y = 0

  • d2ydx2 - dydx = 0


547.

The particular solution of the differential equation xdy + 2ydx = 0, when x = 2, y = 1 is

  • xy = 4

  • x2y = 4

  • xy2 = 4

  • x2y2 = 4


548.

The general solution of the equation dydx = y2 - x2yx + 1 is

  • y2 = (1 + x)log(1 + x) - c

  • y2 = 1 + xlogc1 - x - 1

  • y2 = 1 - xlogc1 - x - 1

  • y2 = 1 + xlogc1 + x - 1


Advertisement
549.

The general solution of the differential equation dydx + sinx + y2 = sinx - y2 is

  • logetany2 = - 2sinx2 +C

  • logetany4 = 2sinx2 +C

  • logetany2 = - 2sinx2 +C

  • logetany4 = - 2sinx2 +C


550.

The function y specified implicitly by the relation 0yetdt + 0xcostdt = 0 satisfies the differential equation

  • e2yd2ydx2 + dydx2 = sinx

  • eyd2ydx2 + dydx2 = sin2x

  • ey2d2ydx2 + dydx2 = sinx

  • eyd2ydx2 + dydx2 = sinx


Advertisement