Evaluate: ∫0πxsinx1 + cos2x dx
I = ∫0πxsinx1 + cos2xdx .............(1)I = ∫0π(π - x) sin (π - x)1 + cos2 (π - x)dxI = ∫0π(π - x) sin x1 + cos2 xdxI = ∫0ππ sin x1 + cos2 xdx - ∫0πxsinx1 + cos2xdx ..........(2)
Adding (1) and (2), we get:
2I = ∫0ππ sinx1 + cos2x dxNow, let cosx = t ⇒ -sinx dx = dtWhen x = π, t = cosπ = -1When x = 0, t = cos0 = 12I = ∫1-1π - dt1 + t2 2I = π ∫1-1 11 + t2 dt2I = π tan-1t 1-12I = π tan-1 1 - tan-1 -1 2I = π π4 - -π42I = π22∴ I = π24
Evaluate: ∫-aa a - xa + x dx
Evaluate: ∫sec2 7 - x dx
If ∫01 3x2 + 2x + k dx = 0 , find the value of k.
Evaluate: ∫ ex5 - 4 ex - e2x dx
Evaluate: ∫x - 4 ex x - 2 3 dx.
Evaluate: ∫0π ecosxecosx + e-cosx
Evaluate: ∫0π2 2 log sin x - log sin 2x dx
Evaluate: ∫log xx dx
Evaluate: ∫0π x1 + sinx dx