Evaluate: ∫0πxsinx1 + cos2x dx
Evaluate: ∫-aa a - xa + x dx
Evaluate: ∫sec2 7 - x dx
If ∫01 3x2 + 2x + k dx = 0 , find the value of k.
Evaluate: ∫ ex5 - 4 ex - e2x dx
Evaluate: ∫x - 4 ex x - 2 3 dx.
I =∫x - 4 ex x - 2 3 dxI =∫ exx - 2 x - 2 3 - 2 x - 2 3 dxI =∫ ex1 x - 2 2 - 2 x - 2 3 dx
Thus the given integral is of the form,
I = ∫ ex f ( x ) +f' ( x ) dx where, f ( x ) = 1 x - 2 2; f' ( x ) = -2 x - 2 3I = ∫ ex x - 2 2 dx - ∫ 2ex x - 2 3 dx = ex x - 2 2 - ∫ ex ( - 2 ) x - 2 3 dx - ∫ 2ex x - 2 3 dx + CSo, I = ex x - 2 2 + C
Evaluate: ∫0π ecosxecosx + e-cosx
Evaluate: ∫0π2 2 log sin x - log sin 2x dx
Evaluate: ∫log xx dx
Evaluate: ∫0π x1 + sinx dx