Evaluate: ∫0π x1 + sinx  dx

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsLong Answer Type

261.

Evaluate: 0πxsinx1 + cos2x dx


262.

Evaluate: -aa a - xa + x dx


 Multiple Choice QuestionsShort Answer Type

263.

Evaluate: sec2  7 - x  dx


264.

If 01 3x2 + 2x + k  dx = 0  , find the value of k.


Advertisement

 Multiple Choice QuestionsLong Answer Type

265.

Evaluate:  ex5 - 4 ex - e2x dx


266.

Evaluate: x - 4 ex x - 2 3 dx.


267.

Evaluate: 0π ecosxecosx + e-cosx


268.

Evaluate: 0π2  2 log sin x - log sin 2x  dx


Advertisement

 Multiple Choice QuestionsShort Answer Type

269.

Evaluate: log xx dx


 Multiple Choice QuestionsLong Answer Type

Advertisement

270.

Evaluate: 0π x1 + sinx  dx


Let I = 0π x1 + sinx dx          .........(i)Using the property  0a f ( x ) dx =  0a f ( a -x ) dx I =  0π π - x1 + sin  π - x  dx       = 0π π - x1 + sin x dx           .........(ii)

Now adding (i) and (ii), we get

2I = 0π x1 + sinx dx + 0π π - x1 + sinx dx    = 0π π1 + sinx dx    = π 0π 11 + sinx dx    =  π 0π  1 - sinx  1 - sin2x  dx    =  π 0π  1 - sinx  cos2x  dx    = π   0π 1cos2x - sinxcos2x  dx 

    = π  0π sec2 x - secx tanx dx    = π 0π sec2 x dx - 0π secx tanx dx     = π   tanx 0π  -  secx 0π  2I =  π  2    I =  πSo, 0π x1 + sinx dx = π


Advertisement
Advertisement