Evaluate: ∫ ex sin4x - 41 - cos4x dx
Evaluate: ∫ 1 - x2x 1 - 2x dx
Evaluate ∫13 3 x2 + 2 x dx as limit of sums.
Write the value of ∫ sec x sec x + tan x dx
Write the value of ∫ dxx2 + 16
Evaluate: ∫ 5 x + 3 x2 + 4 x + 10 dx
Evaluate: ∫ 2x x2 + 1 x2 + 3 dx
Evaluate: ∫0π2 2 sin x cos x tan-1 sin x dx
Consider the given integral
I = ∫0π2 2 sin x cos x tan-1 sin x dxLet t = sin x⇒ dt = cos x dxWhen x = π2, t = 1When x= 0, t = 0Now, ∫ 2 sin x cos x tan-1 sin x dx= ∫ 2 t tan-1 t dt
= tan-1 t ∫ 2 t dt - ∫ ddt . tan-1 ∫ 2 t dt dt= tan-1 t 2 . t22 - ∫ 11 + t2 x 2. t22 dt= t2 tan-1 t - ∫ t21 + t2 dt= t2 tan-1 t - ∫ 1 - 11 + t2 dt= t2 tan-1 t - t + tan-1 t
∴ I = ∫0π2 2 sin x cos x tan-1 sin x dx= t2 tan-1 t - t + tan-1 t 01= 12 tan-1 1 - 1 + tan-1 1 - 02 tan-1 0 - 0 + tan-1 0 = 1 x π4 - 1 + π4 - 0= π4 - 1 + π4= π2 - 1
Evaluate: ∫0π2 x sin x cos xsin4 x + cos4 x dx
Evaluate ∫( 1 - x ) x dx