Evaluate: ∫ ex sin4x - 41 - cos4x dx
Evaluate: ∫ 1 - x2x 1 - 2x dx
Evaluate ∫13 3 x2 + 2 x dx as limit of sums.
Write the value of ∫ sec x sec x + tan x dx
Write the value of ∫ dxx2 + 16
Evaluate: ∫ 5 x + 3 x2 + 4 x + 10 dx
Evaluate: ∫ 2x x2 + 1 x2 + 3 dx
Evaluate: ∫0π2 2 sin x cos x tan-1 sin x dx
Evaluate: ∫0π2 x sin x cos xsin4 x + cos4 x dx
I = ∫0π2 x sin x cos xsin4 x + cos4 x dx ............( i )Using the property ∫0a f ( x ) dx = ∫0a f ( a- x ) dxI = ∫0π2 π2 - x sin π2 - x cos π2 - x sin4 π2 - x + cos4 π2 - x dx⇒ I = ∫0π2 π2 - x cos x sin x sin4 x + cos4 x dx .............( ii )
Adding ( i ) and ( ii ),
2 I = ∫0π2 π2 . sin x cos x sin4 x + cos4 x dx⇒ I = π4 ∫0π2 sin x cos x sin4 x + cos4 x dx= π4 ∫0π2 sin x cos xcos4 x sin4 x cos4 x + 1 dx= π4 ∫0π2 tan x sec2 xtan4 x + 1 dx
Put tan2 x = z
∴ 2 tan x sec2 x dx = dz
⇒ tan x sec2 x dx = dz2When x = 0, z = 0 and when x = π2, z = ∞∴ I = π4 ∫0∞ dz2z2 + 1⇒ I = π8 ∫0∞ dz1+ z2 = π8 tan-1 z 0∞ = π8 tan-1 ∞ - tan-1 0 = π8 π2 - 0 = π216
Evaluate ∫( 1 - x ) x dx