Evaluate: ∫0π2 x sin x cos x

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsLong Answer Type

271.

Evaluate:  ex  sin4x - 41 - cos4x dx


272.

Evaluate:  1 - x2x  1 - 2x  dx


273.

Evaluate 13  3 x2 + 2 x  dx  as limit of sums.


 Multiple Choice QuestionsShort Answer Type

274.

Write the value of  sec x  sec x + tan x  dx


Advertisement
275.

Write the value of  dxx2 + 16


 Multiple Choice QuestionsLong Answer Type

276.

Evaluate:  5 x + 3 x2 + 4 x + 10 dx


277.

Evaluate:  2x  x2 + 1   x2 + 3  dx


278.

Evaluate: 0π2 2 sin x cos x tan-1  sin x  dx


Advertisement
Advertisement

279.

Evaluate: 0π2 x sin x cos xsin4 x + cos4 x dx


I = 0π2 x sin x cos xsin4 x + cos4 x dx                            ............( i )Using the property  0a f ( x ) dx = 0a f ( a- x ) dxI = 0π2 π2 - x   sin π2 - x   cos π2 - x sin4 π2 - x  + cos4 π2 - x  dx I = 0π2 π2 - x  cos x sin x sin4 x + cos4 x dx            .............( ii )

Adding  ( i )  and  ( ii ),

2 I = 0π2  π2 . sin x cos x sin4 x + cos4 x   dx I = π4  0π2   sin x cos x sin4 x + cos4 x    dx= π4  0π2    sin x cos xcos4 x sin4 x cos4 x + 1   dx=  π4  0π2  tan x sec2 xtan4 x + 1 dx

Put  tan2 x = z

 2 tan x sec2 x  dx =  dz

 tan x sec2 x dx = dz2When  x = 0,   z = 0   and   when  x = π2,   z =  I = π4 0 dz2z2 + 1  I = π8 0 dz1+ z2           = π8  tan-1  z  0          = π8  tan-1  -  tan-1 0          = π8  π2 - 0           = π216


Advertisement

 Multiple Choice QuestionsShort Answer Type

280.

Evaluate ( 1 - x )   x  dx


Advertisement