∫01log1x - 1dx
1
0
2
None of the above
If [x] denotes the greatest integer less than or equal to x, then the value of the integral ∫02x2xdx equals
53
73
83
43
If ϕt = 1, for 0 ≤ t < 10, otherwise, then
∫- 30003000∑r' = 20142016ϕt - r'ϕt - 2016dt is
a real number
does not exist
The value of limx→2∫2x3t2x - 2dt is
10
12
18
16
Let f(x) denotes the fractional part of a real number x. Then, the value of ∫03f(x2)dx
23 - 2 - 1
2 - 3 + 1
3 - 2 + 1
C.
I = ∫03f(x2)dx
= ∫03x2dx= ∫03x2 - x2dx= ∫03x2dx - ∫03x2dx= x3303 - ∫01x2dx + ∫12x2dx + ∫23x2dx= 3 - ∫010dx + ∫121dx + ∫232dx= 3 - 0 + x12 + 2x23= 3 - 2 + 1 - 23 + 22= 2 - 3 + 1
The value of ∫x - 2x - 22 x + 371/3dx
320x - 2x + 34/3 + C
320x - 2x + 33/4 + C
512x - 2x + 34/3 + C
320x - 2x + 35/3 + C
If f(x) = 2x2 + 1, x ≤ 14x3 - 1, x > 1, then ∫02f(x)dx is
47/3
50/3
1/3
47/2
If I = ∫02ex4x - αdx = 0, then α lies in the interval
(0, 2)
(- 1, 0)
(2, 3)
(- 2, - 1)
The value of limx→0∫0x2cost2dxxsinx
- 1
loge2
Let f(x) = maxx + x, x - x, where [x] denotes the greatest integer ≤ x. Then, the values of ∫- 33f(x)dx is
51/2
21/2