∫01log1x - 1dx
1
0
2
None of the above
If [x] denotes the greatest integer less than or equal to x, then the value of the integral ∫02x2xdx equals
53
73
83
43
If ϕt = 1, for 0 ≤ t < 10, otherwise, then
∫- 30003000∑r' = 20142016ϕt - r'ϕt - 2016dt is
a real number
does not exist
The value of limx→2∫2x3t2x - 2dt is
10
12
18
16
Let f(x) denotes the fractional part of a real number x. Then, the value of ∫03f(x2)dx
23 - 2 - 1
2 - 3 + 1
3 - 2 + 1
The value of ∫x - 2x - 22 x + 371/3dx
320x - 2x + 34/3 + C
320x - 2x + 33/4 + C
512x - 2x + 34/3 + C
320x - 2x + 35/3 + C
If f(x) = 2x2 + 1, x ≤ 14x3 - 1, x > 1, then ∫02f(x)dx is
47/3
50/3
1/3
47/2
A.
Given, f(x) = 2x2 + 1, x ≤ 14x3 - 1, x > 1
∴ ∫02f(x)dx = ∫01f(x)dx + ∫12fxdx = ∫012x2 + 1dx + ∫124x3 - 1dx = 2x33 + x01 + 4x44 - x12 = 2313 + 1 - (0 + 0) + 24 - 14 - 1 = 23 + 1 + 16 - 2 - 0 = 23 + 15 = 2 + 453 = 473 sq units.
If I = ∫02ex4x - αdx = 0, then α lies in the interval
(0, 2)
(- 1, 0)
(2, 3)
(- 2, - 1)
The value of limx→0∫0x2cost2dxxsinx
- 1
loge2
Let f(x) = maxx + x, x - x, where [x] denotes the greatest integer ≤ x. Then, the values of ∫- 33f(x)dx is
51/2
21/2