If I = ∫02ex4x - αdx =&nb

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

331.

01log1x - 1dx

  • 1

  • 0

  • 2

  • None of the above


332.

If [x] denotes the greatest integer less than or equal to x, then the value of the integral 02x2xdx  equals

  • 53

  • 73

  • 83

  • 43


333.

If ϕt = 1,    for 0  t < 10,    otherwise, then

- 30003000r' = 20142016ϕt - r'ϕt - 2016dt is

  • a real number

  • 1

  • 0

  • does not exist


334.

The value of limx22x3t2x - 2dt is

  • 10

  • 12

  • 18

  • 16


Advertisement
335.

Let f(x) denotes the fractional part of a real number x. Then, the value of 03f(x2)dx

  • 23 - 2 - 1

  • 0

  • 2 - 3 + 1

  • 3 - 2 + 1


336.

The value of x - 2x - 22 x + 371/3dx

  • 320x - 2x +34/3 + C

  • 320x - 2x +33/4 + C

  • 512x - 2x +34/3 + C

  • 320x - 2x +35/3 + C


337.

If f(x) = 2x2 + 1, x  14x3 - 1, x > 1, then 02f(x)dx is

  • 47/3

  • 50/3

  • 1/3

  • 47/2


Advertisement

338.

If I = 02ex4x - αdx = 0, then α lies in the interval

  • (0, 2)

  • (- 1, 0)

  • (2, 3)

  • (- 2, - 1)


A.

(0, 2)

Given, I = 02ex4x - αdx = 0                       02ex4 xdx = 02ex4αdx

Here, we see that 02ex4dx gives us an area between two curves ex4 and x from x = 0 to x = 2.

Similarly, 02ex4αdx  gives us a same area, so α should lies between 0 to 2, i.e., α  (0, 2).


Advertisement
Advertisement
339.

The value of limx00x2cost2dxxsinx

  • 1

  • - 1

  • 2

  • loge2


340.

Let f(x) = maxx +x, x - x, where [x] denotes the greatest integer  x. Then, the values of - 33f(x)dx is

  • 0

  • 51/2

  • 21/2

  • 1


Advertisement