∫dxx + 1x is equal to
tan-1x + C
2tan-1x + C
tan-1x32 + C
∫logxx2dx is equal to
logxx + 1x2 + C
- logxx + 2x + C
- logxx - 12x + C
- logxx - 1x + C
If ∫fxlogcosxdx = - loglogcosx + C, then f(x) is equal to
tanx
- sinx
- cosx
- tanx
∫xsin-1x1 - x2dx is equal to
x - sin-1x + C
x - 1 - x2sin-1x + C
x + sin-1x + C
x + 1 - x2sin-1x + C
∫4ex - 6e- x9ex - 4e- xdx is equal to
32x + 3536log9e2x - 4 + C
32x - 3536log9e2x - 4 + C
- 32x + 3536log9e2x - 4 + C
- 52x + 3536log9e2x - 4 + C
∫1 - x1 + xdx is equal to
sin-1x + 1 - x2 + C
sin-1x - 21 - x2 + C
2sin-1x - 1 - x2 + C
sin-1x - 1 - x2 + C
∫dx1 + tanx is equal to
12 + 12logcosx + sinx + C
x2 + 12logcosx - sinx + C
12 + 12logcosx - sinx + C
x2 + 12logcosx + sinx + C
D.
∫dx1 + tanx= ∫cosxsinx + cosx × cosx - sinxcosx - sinxdx= ∫cos2x - sinxcosxcos2x - sin2xdx= 12∫2cos2xcos2xdx - 12∫2sinx . cosxcos2xdx= 12∫1 + cos2xcos2xdx - 12∫sin2xcos2xdx= 12∫sec2xdx + 12∫dx - 12∫tan2xdx= 12 . 12logsec2x + tan2x + 12 . x - 12 . 12logsec2x + C= 14logsec2x + tan2x - 14logsec2x + x2 + C= x2 + 14logsec2x + tan2xsec2x + C= x2 + 14log1 + sin2x C= x2 + 14logsin2x + cos2x + 2sinxcosx + C= x2 + 14logsinx + cosx2 + C= x2 + 12logcosx + sinx + C
If ∫0ax2 - 11 - xdx = - 12, then the value of a is equal to
- 1
1
2
- 2
The value of the integral ∫01x1 - x5dx is equal to
16
17
67
142
If [x] denotes the greatest integer less than or equal to x, then the value of ∫02x - 2 + xdx is equal to
3
4