∫dx1 + tanx is equal to from Mathematics Inte

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

471.

dxx + 1x is equal to

  • tan-1x + C

  • 2tan-1x + C

  • 2tan-1x + C

  • tan-1x32 +C


472.

logxx2dx is equal to

  • logxx + 1x2 + C

  • - logxx + 2x + C

  • - logxx - 12x + C

  • - logxx - 1x + C


473.

If fxlogcosxdx = - loglogcosx + C, then f(x) is equal to

  • tanx

  • sinx

  • - cosx

  • - tanx


474.

xsin-1x1 - x2dx is equal to

  • x - sin-1x + C

  • x - 1 - x2sin-1x + C

  • x + sin-1x + C

  • x + 1 - x2sin-1x + C


Advertisement
475.

4ex - 6e- x9ex - 4e- xdx is equal to

  • 32x + 3536log9e2x - 4 + C

  • 32x - 3536log9e2x - 4 + C

  • - 32x + 3536log9e2x - 4 + C

  • - 52x + 3536log9e2x - 4 + C


476.

1 - x1 + xdx is equal to

  • sin-1x + 1 - x2 + C

  • sin-1x - 21 - x2 + C

  • 2sin-1x - 1 - x2 + C

  • sin-1x - 1 - x2 + C


Advertisement

477.

dx1 + tanx is equal to

  • 12 + 12logcosx + sinx + C

  • x2 + 12logcosx - sinx + C

  • 12 + 12logcosx - sinx + C

  • x2 + 12logcosx + sinx + C


D.

x2 + 12logcosx + sinx + C

dx1 + tanx= cosxsinx + cosx × cosx - sinxcosx - sinxdx= cos2x - sinxcosxcos2x - sin2xdx= 122cos2xcos2xdx - 122sinx . cosxcos2xdx= 121 + cos2xcos2xdx - 12sin2xcos2xdx= 12sec2xdx + 12dx - 12tan2xdx= 12 . 12logsec2x + tan2x + 12 . x          - 12 . 12logsec2x + C= 14logsec2x + tan2x - 14logsec2x + x2 + C= x2 + 14logsec2x + tan2xsec2x + C= x2 + 14log1 + sin2x C= x2 + 14logsin2x + cos2x + 2sinxcosx + C= x2 + 14logsinx + cosx2 + C= x2 + 12logcosx + sinx + C


Advertisement
478.

If 0ax2 - 11 - xdx = - 12, then the value of a is equal to

  • - 1

  • 1

  • 2

  • - 2


Advertisement
479.

The value of the integral 01x1 - x5dx is equal to

  • 16

  • 17

  • 67

  • 142


480.

If [x] denotes the greatest integer less than or equal to x, then the value of 02x - 2 + xdx is equal to

  • 2

  • 3

  • 1

  • 4


Advertisement