∫dxx + 1x is equal to
tan-1x + C
2tan-1x + C
tan-1x32 + C
∫logxx2dx is equal to
logxx + 1x2 + C
- logxx + 2x + C
- logxx - 12x + C
- logxx - 1x + C
If ∫fxlogcosxdx = - loglogcosx + C, then f(x) is equal to
tanx
- sinx
- cosx
- tanx
∫xsin-1x1 - x2dx is equal to
x - sin-1x + C
x - 1 - x2sin-1x + C
x + sin-1x + C
x + 1 - x2sin-1x + C
∫4ex - 6e- x9ex - 4e- xdx is equal to
32x + 3536log9e2x - 4 + C
32x - 3536log9e2x - 4 + C
- 32x + 3536log9e2x - 4 + C
- 52x + 3536log9e2x - 4 + C
∫1 - x1 + xdx is equal to
sin-1x + 1 - x2 + C
sin-1x - 21 - x2 + C
2sin-1x - 1 - x2 + C
sin-1x - 1 - x2 + C
∫dx1 + tanx is equal to
12 + 12logcosx + sinx + C
x2 + 12logcosx - sinx + C
12 + 12logcosx - sinx + C
x2 + 12logcosx + sinx + C
If ∫0ax2 - 11 - xdx = - 12, then the value of a is equal to
- 1
1
2
- 2
The value of the integral ∫01x1 - x5dx is equal to
16
17
67
142
D.
∫01x1 - x5dx= ∫01x2 - 1 . 1 - x6 - 1dx= B2, 6 ∵ Bm, n = ∫01xm - 11 - xn - 1dx∵ Bm, n = mnm + n= 262 + 6 = 268= 1 . 5 . 4 . 3 . 2 . 17 . 6 . 5 . 4 . 3 . 2 . 1= 142
If [x] denotes the greatest integer less than or equal to x, then the value of ∫02x - 2 + xdx is equal to
3
4