The integral ∫sec23xcsc43xdx is equal to from Math

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

601.

Let f(x) = 0xg(t)dt, where g is a non–zero even function. If f(x + 5) = g(x), then 0xf(t)dt equals :

  • x + 55g(t)dt

  • 25x + 5g(t)dt

  • 5x +5g(t)dt

  • 5x + 55g(t)dt


602.

If f : R  R is a differentiable function and f(2) = 6, then limx26f(x)2t dtx - 2 is

  • 0

  • 24f'(2)

  • 12f'(2)

  • 2f'(2)


603.

The value of the integral 01xcot-11 - x2 +x4dx is

  • π2 - 12loge2

  • π4 - loge2

  • π4 - 12loge2

  • π2 - loge2


604.

If esecxsecxtanxfx + secxtanx + sec2xdx = esecxf(x) +C, then a possible choice of f(x) is :

  • xsecx + tanx + 12

  • secx + tanx - 12

  • secx + tanx + 12

  • secx - tanx - 12


Advertisement
605.

The value of 0π2sin3xsinx + cosxdx is :

  • π - 24

  • π - 28

  • π - 14

  • π - 12


Advertisement

606.

The integral sec23xcsc43xdx is equal to

  • - 3 cot-13x + C

  • - 3 tan-13x +C

  • 3 tan-13x +C

  • - 34 tan-43x +C


B.

- 3 tan-13x +C

sec23xcsc43xdxPut 1cos23xsin 23x2dx = 1cos23xtan 23x2cos43xPut tan(x) = t= dtt43 = t- 13 . (- 3) + c = - 3tanx- 13 + C= - 3 tan-13x + C


Advertisement
607.

If dxx2 - 2x + 102 = Atan-1x - 13 + fxx2 - 2x + 10 + C where C is a constant of integration, then

  • A = 154, fx = 3x - 1

  • A = 154, fx = 9x - 12

  • A = 127, fx = 9x - 1

  • A = 181, fx = 3x - 1


608.

The value of 02πsin2x1 + cos3xdx, (where [t] denotes Greatest Integer Function)

  • - 2π

  • π

  • 2π

  • - π


Advertisement
609.

If x5e- x2dx = g(x)e- 2 + c, where c is a constant of interation then g(- 1) is equal to :

  • - 1

  • 1

  • 12

  • - 52


610.

The integral π6π3sec23csc43xdx =

  • 35/3 - 31/3

  • 37/6 - 35/6

  • 35/6 - 31/3

  • 34/3 - 31/3


Advertisement