Let f(x) = ∫0xg(t)dt, where g is a non–zero even function. If f(x + 5) = g(x), then ∫0xf(t)dt equals :
∫x + 55g(t)dt
2∫5x + 5g(t)dt
∫5x + 5g(t)dt
5∫x + 55g(t)dt
If f : R → R is a differentiable function and f(2) = 6, then limx→2∫6f(x)2t dtx - 2 is
0
24f'(2)
12f'(2)
2f'(2)
The value of the integral ∫01xcot-11 - x2 + x4dx is
π2 - 12loge2
π4 - loge2
π4 - 12loge2
π2 - loge2
If ∫esecxsecxtanxfx + secxtanx + sec2xdx = esecxf(x) + C, then a possible choice of f(x) is :
xsecx + tanx + 12
secx + tanx - 12
secx + tanx + 12
secx - tanx - 12
The value of ∫0π2sin3xsinx + cosxdx is :
π - 24
π - 28
π - 14
π - 12
The integral ∫sec23xcsc43xdx is equal to
- 3 cot-13x + C
- 3 tan-13x + C
3 tan-13x + C
- 34 tan-43x + C
B.
∫sec23xcsc43xdxPut ∫1cos23xsin 23x2dx = ∫1cos23xtan 23x2cos43xPut tan(x) = t= ∫dtt43 = t- 13 . (- 3) + c = - 3tanx- 13 + C= - 3 tan-13x + C
If ∫dxx2 - 2x + 102 = Atan-1x - 13 + fxx2 - 2x + 10 + C where C is a constant of integration, then
A = 154, fx = 3x - 1
A = 154, fx = 9x - 12
A = 127, fx = 9x - 1
A = 181, fx = 3x - 1
The value of ∫02πsin2x1 + cos3xdx, (where [t] denotes Greatest Integer Function)
- 2π
π
2π
- π
If ∫x5e- x2dx = g(x)e- 2 + c, where c is a constant of interation then g(- 1) is equal to :
- 1
1
12
- 52
The integral ∫π6π3sec23csc43xdx =
35/3 - 31/3
37/6 - 35/6
35/6 - 31/3
34/3 - 31/3