The integral ∫π6π3sec23csc43xdx = from Mathe

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

601.

Let f(x) = 0xg(t)dt, where g is a non–zero even function. If f(x + 5) = g(x), then 0xf(t)dt equals :

  • x + 55g(t)dt

  • 25x + 5g(t)dt

  • 5x +5g(t)dt

  • 5x + 55g(t)dt


602.

If f : R  R is a differentiable function and f(2) = 6, then limx26f(x)2t dtx - 2 is

  • 0

  • 24f'(2)

  • 12f'(2)

  • 2f'(2)


603.

The value of the integral 01xcot-11 - x2 +x4dx is

  • π2 - 12loge2

  • π4 - loge2

  • π4 - 12loge2

  • π2 - loge2


604.

If esecxsecxtanxfx + secxtanx + sec2xdx = esecxf(x) +C, then a possible choice of f(x) is :

  • xsecx + tanx + 12

  • secx + tanx - 12

  • secx + tanx + 12

  • secx - tanx - 12


Advertisement
605.

The value of 0π2sin3xsinx + cosxdx is :

  • π - 24

  • π - 28

  • π - 14

  • π - 12


606.

The integral sec23xcsc43xdx is equal to

  • - 3 cot-13x + C

  • - 3 tan-13x +C

  • 3 tan-13x +C

  • - 34 tan-43x +C


607.

If dxx2 - 2x + 102 = Atan-1x - 13 + fxx2 - 2x + 10 + C where C is a constant of integration, then

  • A = 154, fx = 3x - 1

  • A = 154, fx = 9x - 12

  • A = 127, fx = 9x - 1

  • A = 181, fx = 3x - 1


608.

The value of 02πsin2x1 + cos3xdx, (where [t] denotes Greatest Integer Function)

  • - 2π

  • π

  • 2π

  • - π


Advertisement
609.

If x5e- x2dx = g(x)e- 2 + c, where c is a constant of interation then g(- 1) is equal to :

  • - 1

  • 1

  • 12

  • - 52


Advertisement

610.

The integral π6π3sec23csc43xdx =

  • 35/3 - 31/3

  • 37/6 - 35/6

  • 35/6 - 31/3

  • 34/3 - 31/3


B.

37/6 - 35/6

π6π3sec2utanu43dx433t- 43dt= - 3tt3133= 3313 - 313= 376 - 356


Advertisement
Advertisement