∫- π2π2cosx1 + exdx
1
0
- 1
None of these
A.
I = ∫- π2π2cosx1 + exdx ...iI = ∫- π2π2cosπ2 - π2 - x1 + eπ2 - π2 - xdx = ∫- π2π2cos- xdx1 + e- xI = ∫- π2π2cosx1 + exdx ...ii = ∫- π2π2excosx1 + exdxOn adding Eqs. (i) and (ii), we get2I = ∫- π2π21 + excosx1 + ex = ∫- π2π2cosxdx = ∫0π2cosxdx ∵ Since, cos(x) is an even function∴ 2I = 2sinx0π2 = 21 - 0 = 2⇒ I = 1
∫0π2dx1 + tanx is equal to
π
π2
π3
π4
By Simpson rule taking n = 4, the value of the integral ∫0111 + x2dx is equal to
0.788
0.781
0.785
None of the above
The value of ∫0πlog1 + cosxdx is
- π2log2
πlog12
πlog2
π2log2
The value of ∫344 - xx - 3dx is
π16
π8
The value of ∫dxxxn + 1 is
1nlogxnxn + 1 + C
logxn + 1xn + C
1nlogxn + 1xn + C
logxnxn + 1 + C
The value of ∫coslogxdx is
12sinlogx + coslogx + C
x2sinlogx + coslogx + C
x2sinlogx - coslogx + C
12sinlogx - coslogx + C
The value of ∫ex1 + sinx1 + cosxdx is
12exsecx2 + C
exsecx2 + C
12extanx2 + C
extanx2 + C
The value of ∫13sinx - cosx + 3dx is
logtanx2 + 12tanx2 + 1 + C
12log2tanx2 + 1tanx2 + 1 + C
log2tanx2 + 1tanx2 + 1 + C
2log2tanx2 + 1tanx2 + 1 + C
The value of ∫sin2xsin4x + cos4xdx is
tan-1cot2x + C
tan-1cos2x + C
tan-1sin2x + C
tan-1tan2x + C