∫- π2π2cosx1 + exdx
1
0
- 1
None of these
∫0π2dx1 + tanx is equal to
π
π2
π3
π4
D.
Given, I = ∫0π2dx1 + tanx I = ∫0π2cosxsinx + cosxdx ...i I = ∫0π2cosπ2 - xsinπ2 - x + cosπ2 - xdx = ∫0π2sinxcosx + sinxdx ...iiOn adding Eqs. (i) and (ii), we get 2I = ∫0π2sinx + cosxsinx + cosxdx = ∫0π2dx = π2⇒ I = π4
By Simpson rule taking n = 4, the value of the integral ∫0111 + x2dx is equal to
0.788
0.781
0.785
None of the above
The value of ∫0πlog1 + cosxdx is
- π2log2
πlog12
πlog2
π2log2
The value of ∫344 - xx - 3dx is
π16
π8
The value of ∫dxxxn + 1 is
1nlogxnxn + 1 + C
logxn + 1xn + C
1nlogxn + 1xn + C
logxnxn + 1 + C
The value of ∫coslogxdx is
12sinlogx + coslogx + C
x2sinlogx + coslogx + C
x2sinlogx - coslogx + C
12sinlogx - coslogx + C
The value of ∫ex1 + sinx1 + cosxdx is
12exsecx2 + C
exsecx2 + C
12extanx2 + C
extanx2 + C
The value of ∫13sinx - cosx + 3dx is
logtanx2 + 12tanx2 + 1 + C
12log2tanx2 + 1tanx2 + 1 + C
log2tanx2 + 1tanx2 + 1 + C
2log2tanx2 + 1tanx2 + 1 + C
The value of ∫sin2xsin4x + cos4xdx is
tan-1cot2x + C
tan-1cos2x + C
tan-1sin2x + C
tan-1tan2x + C