∫- π2π2cosx1 + exdx
1
0
- 1
None of these
∫0π2dx1 + tanx is equal to
π
π2
π3
π4
By Simpson rule taking n = 4, the value of the integral ∫0111 + x2dx is equal to
0.788
0.781
0.785
None of the above
The value of ∫0πlog1 + cosxdx is
- π2log2
πlog12
πlog2
π2log2
The value of ∫344 - xx - 3dx is
π16
π8
The value of ∫dxxxn + 1 is
1nlogxnxn + 1 + C
logxn + 1xn + C
1nlogxn + 1xn + C
logxnxn + 1 + C
A.
Let I = ∫dxxxn + 1Let consider t = xn + 1, dt = nxn - 1dx = ∫dtnxn . t = 1n∫dttt - 1 = 1n∫1t - 1 - 1tdt = 1nlogt - 1 - logt + C = 1nlogt - 1t + C = 1nlogxnxn + 1 + C
The value of ∫coslogxdx is
12sinlogx + coslogx + C
x2sinlogx + coslogx + C
x2sinlogx - coslogx + C
12sinlogx - coslogx + C
The value of ∫ex1 + sinx1 + cosxdx is
12exsecx2 + C
exsecx2 + C
12extanx2 + C
extanx2 + C
The value of ∫13sinx - cosx + 3dx is
logtanx2 + 12tanx2 + 1 + C
12log2tanx2 + 1tanx2 + 1 + C
log2tanx2 + 1tanx2 + 1 + C
2log2tanx2 + 1tanx2 + 1 + C
The value of ∫sin2xsin4x + cos4xdx is
tan-1cot2x + C
tan-1cos2x + C
tan-1sin2x + C
tan-1tan2x + C