∫0πxdxa2cos2x + b2sin2xdx is equal to from

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

741.

dxxx7 + 1 is equal to

  • logx7x7 + 1 + c

  • 17logx7x7 + 1 + c

  • logx7 + 1x7 + c

  • 17logx7 + 1x7 + c


742.

- 111 - xdx is equal to

  • - 2

  • 0

  • 2

  • 4


743.

xexdx is equal to

  • 2x - ex - 4xex +c

  • 2x - 4x + 4ex +c

  • 2x + 4x + 4ex +c

  • 1 - 4x ex +c


744.

dxx2 +2x + 2 is equal to

  • sin-1x +1 +c

  • sinh-1x +1 +c

  • tanh-1x +1 +c

  • tan-1x +1 +c


Advertisement
745.

02πsinx +sinxdx is equal to

  • 4

  • 0

  • 1

  • 8


Advertisement

746.

0πxdxa2cos2x + b2sin2xdx is equal to

  • π2ab

  • πab

  • π22ab

  • π2ab


D.

π2ab

Let I = 0πxdxa2cos2x + b2sin2xdx     ...i      I = 0ππ - xa2cos2π - x + b2sin2π - xUsing 0afxdx = 0afa - xdxor   I = 0ππ - xa2cos2x + b2sin2xdx      ...iiAdding Eqs. (i) and (ii),2I = 0πx + π - xa2cos2x + b2sin2x   = π0πdxa2cos2x + b2sin2x   = 2π0π2dxa2cos2x + b2sin2x 02af(x)dx = 20afxdx,     = 2π0π2xa2 +  b2tan2x

Now, put tan x = t dx = dtsec2x = 2π0dta2 + b2t2        = 1b2 × 2π0dta2b2 + t2 = 2πb2 . batan-1bta       = 2πabtan-1 - tan-10       = 2πabπ2 - 0 = 2πab × π2       = π2ab


Advertisement
747.

ex1 + sinx1 + cosxdx is equal to

  • exsec2x2 + c

  • extanx2 + c

  • exsecx2 +c

  • extanx +  c


748.

1 + sinx4dx is equal to

  • 8sinx8 + cosx8 + C

  • 8sinx8 - cosx8 + C

  • 8cosx8 - sinx8 + C

  • 18sinx8 - cosx8 + C


Advertisement
749.

0xdx1 + x1 + x2 is equal to

  • π2

  • 0

  • 1

  • π4


750.

If Inlogxndx, then In + nIn - 1 is equal to

  • xlogxn

  • xlogxn

  • nlogxn

  • logxn - 1


Advertisement