∫0∞xdx1 + x1 + x2 is equal to

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

741.

dxxx7 + 1 is equal to

  • logx7x7 + 1 + c

  • 17logx7x7 + 1 + c

  • logx7 + 1x7 + c

  • 17logx7 + 1x7 + c


742.

- 111 - xdx is equal to

  • - 2

  • 0

  • 2

  • 4


743.

xexdx is equal to

  • 2x - ex - 4xex +c

  • 2x - 4x + 4ex +c

  • 2x + 4x + 4ex +c

  • 1 - 4x ex +c


744.

dxx2 +2x + 2 is equal to

  • sin-1x +1 +c

  • sinh-1x +1 +c

  • tanh-1x +1 +c

  • tan-1x +1 +c


Advertisement
745.

02πsinx +sinxdx is equal to

  • 4

  • 0

  • 1

  • 8


746.

0πxdxa2cos2x + b2sin2xdx is equal to

  • π2ab

  • πab

  • π22ab

  • π2ab


747.

ex1 + sinx1 + cosxdx is equal to

  • exsec2x2 + c

  • extanx2 + c

  • exsecx2 +c

  • extanx +  c


748.

1 + sinx4dx is equal to

  • 8sinx8 + cosx8 + C

  • 8sinx8 - cosx8 + C

  • 8cosx8 - sinx8 + C

  • 18sinx8 - cosx8 + C


Advertisement
Advertisement

749.

0xdx1 + x1 + x2 is equal to

  • π2

  • 0

  • 1

  • π4


D.

π4

0π2xdx1 + x1 + x2Put x = tanθ dx = sec2θ= 0π2tanθsec2θ1 + tanθ1 + tan2θ For limit, x = 0  θ = 0, x =   θ = π2= 0π2tanθsec2θ1 + tanθsec2θ= π2tanθ1 + tanθ = 0π2sinθcosθ1 + sinθcosθ= 0π2sinθcosθ + sinθLet I = 0π2sinθcosθ + sinθ       ...i

     I = 0π2sinπ2 - θcosπ2 - θ + sinπ2 - θ     0afxdx = 0afa - xdx      I = 0π2cosθsinθ + cosθ       ...iiAdding Eqs. (i) and (ii), we get   2I = 0π2sinθcosθ + sinθ + 0π2cosθsinθ + cosθ       = 0π2sinθ + cosθcosθ + sinθ       = 0π2 2I = θ0π2 2I = π2 I   = π4


Advertisement
750.

If Inlogxndx, then In + nIn - 1 is equal to

  • xlogxn

  • xlogxn

  • nlogxn

  • logxn - 1


Advertisement