∫dxxx7 + 1 is equal to
logx7x7 + 1 + c
17logx7x7 + 1 + c
logx7 + 1x7 + c
17logx7 + 1x7 + c
∫- 111 - xdx is equal to
- 2
0
2
4
∫xexdx is equal to
2x - ex - 4xex + c
2x - 4x + 4ex + c
2x + 4x + 4ex + c
1 - 4x ex + c
∫dxx2 + 2x + 2 is equal to
sin-1x + 1 + c
sinh-1x + 1 + c
tanh-1x + 1 + c
tan-1x + 1 + c
∫02πsinx + sinxdx is equal to
1
8
∫0πxdxa2cos2x + b2sin2xdx is equal to
π2ab
πab
π22ab
∫ex1 + sinx1 + cosxdx is equal to
exsec2x2 + c
extanx2 + c
exsecx2 + c
extanx + c
B.
We have, ∫ex1 + sinx1 + cosxdx= ∫ex1 + 2sinx2cosx22cos2x2∵ sin2x = 2sinxcosx, 1 + cos2x = 2cos2x= ∫ex12cos2x2 + 2sinx2cosx22cos2x2dx= ∫ex12sec2x2 + tanx2∴ exfx + f'x, dx = exfx + cHere, fx = tanx2 and f'x = sec2x2⇒ extanx2 + C∴ ∫ex1 + sinx1 + cosxdx = extanx2 + c
∫1 + sinx4dx is equal to
8sinx8 + cosx8 + C
8sinx8 - cosx8 + C
8cosx8 - sinx8 + C
18sinx8 - cosx8 + C
∫0∞xdx1 + x1 + x2 is equal to
π2
π4
If In = ∫logxndx, then In + nIn - 1 is equal to
xlogxn
nlogxn
logxn - 1