If ∫01fxdx = 5, then the value of ... + ∫01x9fx10dx is equal to
125
625
275
55
D.
Given, ∫01fxdx = 5Let I = 100 ∫01x9fx10dxPut x10 = t ⇒ 10x9dx = dt∴ I = 100∫01ft10dt = 10 × 5 = 50∴ ∫01fxdx + 100∫01x9fx10dx = 5 + 50 = 55
If ∫fxsinx . cosxdx = 12b2 - a2logfx + c, where c is the constant of integration, then f(x) is
2abcos2x
2b2 - a2cos2x
2absin2x
2b2 - a2sin2x
If ∫xxx + 1dx = ktan-1m, then (k, m) is
(2, x)
(1, x)
1, x
2, x
∫0π4sinx + cosx3 + sin2xdx is
14log3
log3
12log3
2log3
∫01x1 - x32dx is
- 235
435
2435
- 835
The value of ∫04x - 1dx is
52
5
4
1
If In = ∫0π4tannxdx, where where n is apositive integer, then I10 + I8 is
19
18
17
9
If In = ∫exsinx + cosx1 - sin2xdx is
ex . cscx + C
ex . cotx + C
ex . secx + C
ex . tanx + C
When x > 0, then ∫cos-11 - x21 + x2dx is
2xtan-1x - log1 + x2 + C
2xtan-1x + log1 + x2 + C
If the area between y = mx2 and x = my2 (m > 0) is 1/4 sq units, then the value of m is
± 32
± 23
2
3