If ∫01fxdx = 5, then the value of ... + ∫01x9fx10dx is equal to
125
625
275
55
If ∫fxsinx . cosxdx = 12b2 - a2logfx + c, where c is the constant of integration, then f(x) is
2abcos2x
2b2 - a2cos2x
2absin2x
2b2 - a2sin2x
If ∫xxx + 1dx = ktan-1m, then (k, m) is
(2, x)
(1, x)
1, x
2, x
∫0π4sinx + cosx3 + sin2xdx is
14log3
log3
12log3
2log3
∫01x1 - x32dx is
- 235
435
2435
- 835
The value of ∫04x - 1dx is
52
5
4
1
If In = ∫0π4tannxdx, where where n is apositive integer, then I10 + I8 is
19
18
17
9
If In = ∫exsinx + cosx1 - sin2xdx is
ex . cscx + C
ex . cotx + C
ex . secx + C
ex . tanx + C
When x > 0, then ∫cos-11 - x21 + x2dx is
2xtan-1x - log1 + x2 + C
2xtan-1x + log1 + x2 + C
If the area between y = mx2 and x = my2 (m > 0) is 1/4 sq units, then the value of m is
± 32
± 23
2
3
B.
Given curves; y = mx2 and y2m= x; m > 0Intersection point of both curves x = mmx22 = m3x4⇒ m3x4 - x = 0⇒ xm3x3 - 1 = 0⇒ xmx - 1m2x2 + 1 + mx = 0⇒ x = 0, x = 1/m and y = 0, y = 1/mWe take only the points = (0, 0) and (1/m, 1/m)Now, the area of the curve= ∫01mxm - mx2dxGiven, 14 = 23m . x32 - m . x3301m⇒ 14 = 23m . 1m32 - m3 . 1m3⇒ 14 = 23m2 - 13m2⇒ 14 = 13m2⇒ m2 = 43∴ m = ± 23