The value of the integral ∫- π4π4logsecθ - tanθdθ is
0
π4
π
π2
∫sin2xsin2x + 2cos2xdx is equal to
- log1 + sin2x + C
log1 + cos2x + C
- log1 + cos2x + C
log1 + tan2x + C
C.
Let I = ∫sin2xsin2x + 2cos2xdx = ∫sin2x1 - cos2x + 2cos2xdx = ∫sin2x1 + cos2xdxPut 1 + cos2x = t⇒ - 2cosxsinxdx = dt⇒ - sin2x = dt∴ I = - ∫dtt = - logt + C = - log1 + cos2x + C
∫1x2x4 + 134dx is equal to
- 1 + x4142x + C
- 1 + x414x + C
- 1 + x434x + C
- 1 + x414x2 + C
∫0π4logsinx + cosxcosxdx is equal to
∫0π4logsinx + cosxcosxdx
π4log2
log2
π2log2
∫sin2x1 + cosxdx is equal to
sinx + C
x + sinx + C
cosx + C
x - sinx + C
∫ex1 + sinx1 + cosxdx is equal to
ex + C
extanx2 + C
exsinx + C
tanx2 + C
∫- π4π4dx1 + cos2x is equal to
4
2
1
The value of ∫ex1 + xcos2ex . xdx is equal to
- cotexx + C
tanex . x + C
tanex + C
cotex + C
The vate of ∫exx2tan-1x + tan-1x + 1x2 + 1dx is equal to
extan-1x + C
tan-1ex + C
tan-1xe + C
etan-1x + C
The value of ∫- π4π4sin103x . cos101xdx is
π4103
π4101