The vate of ∫exx2tan-1x + tan-1x + 1

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

801.

The value of the integral - π4π4logsecθ - tanθ is

  • 0

  • π4

  • π

  • π2


802.

sin2xsin2x + 2cos2xdx is equal to

  • - log1 + sin2x + C

  • log1 + cos2x + C

  • - log1 + cos2x + C

  • log1 + tan2x + C


803.

1x2x4 + 134dx is equal to

  • - 1 + x4142x + C

  • - 1 + x414x + C

  • - 1 + x434x + C

  • - 1 + x414x2 + C


804.

0π4logsinx + cosxcosxdx is equal to

  • 0π4logsinx + cosxcosxdx

  • π4log2

  • log2

  • π2log2


Advertisement
805.

sin2x1 + cosxdx is equal to

  • sinx + C

  • x + sinx + C

  • cosx + C

  • x - sinx + C


806.

ex1 + sinx1 + cosxdx is equal to

  • e+ C

  • extanx2 + C

  • exsinx + C

  • tanx2 + C


807.

- π4π4dx1 + cos2x is equal to

  • 4

  • 2

  • 0

  • 1


808.

The value of ex1 +xcos2ex . xdx is equal to

  • - cotexx + C

  • tanex . x + C

  • tanex + C

  • cotex + C


Advertisement
Advertisement

809.

The vate of exx2tan-1x + tan-1x + 1x2 + 1dx is equal to

  • extan-1x + C

  • tan-1ex + C

  • tan-1xe + C

  • etan-1x + C


A.

extan-1x + C

Let I = exx2tan-1x + tan-1x + 1x2 + 1dx I = extan-1x + 1x2 + 1dxIf fx = tan-1x, then  f'x = 1x2 + 1  I = extan-1x + 1x2 + 1dx        = extan-1x + C       exfx + f'xdx = exfx + C


Advertisement
810.

The value of - π4π4sin103x . cos101xdx is

  • π4103

  • π4101

  • 2

  • 0


Advertisement