The value of the integral ∫- π4π4logsecθ - tanθdθ is
0
π4
π
π2
∫sin2xsin2x + 2cos2xdx is equal to
- log1 + sin2x + C
log1 + cos2x + C
- log1 + cos2x + C
log1 + tan2x + C
∫1x2x4 + 134dx is equal to
- 1 + x4142x + C
- 1 + x414x + C
- 1 + x434x + C
- 1 + x414x2 + C
∫0π4logsinx + cosxcosxdx is equal to
∫0π4logsinx + cosxcosxdx
π4log2
log2
π2log2
A.
I = ∫0π4logsinx + cosxcosxdx⇒ I = ∫0π4log1 + tanxdx ...i = ∫0π4log1 + tanπ4 - xdx = ∫0π4log1 + tanπ4 - tanx1 + tanπ4tanxdx = ∫0π4log1 + 1 - tanx1 + tanxdx⇒ I = ∫0π4log21 + tanxdx ...iiOn adding Eqs (i) and (ii), we get 2I = ∫0π4log2dx = log2π4⇒ I = π8log2
∫sin2x1 + cosxdx is equal to
sinx + C
x + sinx + C
cosx + C
x - sinx + C
∫ex1 + sinx1 + cosxdx is equal to
ex + C
extanx2 + C
exsinx + C
tanx2 + C
∫- π4π4dx1 + cos2x is equal to
4
2
1
The value of ∫ex1 + xcos2ex . xdx is equal to
- cotexx + C
tanex . x + C
tanex + C
cotex + C
The vate of ∫exx2tan-1x + tan-1x + 1x2 + 1dx is equal to
extan-1x + C
tan-1ex + C
tan-1xe + C
etan-1x + C
The value of ∫- π4π4sin103x . cos101xdx is
π4103
π4101