limn→∞1k + 2k + 3k + ... + nknk + 1 = ?
1k
2k + 1
1k + 1
2k
limx→0 1 - cos2x3 + cosxxtan4x = ?
- 14
12
1
2
An angle between the curves x2=3y and x2 + y2 = 4 is
tan-153
tan-123
π3
If limx→1x +x2 + x3 + ... + xn - nx - 1 = 820, n ∈ N then the value of n =?
Ans : 40
limx→1x +x2 + x3 + ... + xn - nx - 1 = 820 00limx→1 1 + 2x + 3x2 + ... + nxn - 11 = 820⇒ 1 + 2 + 3 + ... + n = 820⇒ nn + 1n = 820⇒ n2 + n - 1640⇒ n2 + n - 1640 = 0⇒ n = 40 n ∈ N
limx→0tanπ4 + x1x = ?
e
e2
limx→01 - cosx221 - cosx24x8 = 2 - k, find k
The value of 0 . 16log2 . 513 + 132 + 133 + ... ∞ is
limx→aa + 2x13 - 3x133a + x13 - 4x13 a ≠ 0 = ?
292313
2343
2943
232913
Let f : 0, ∞ → 0, ∞ be a differentiable function such that f(1) = e and limt→x t2f2x - x2f2tt - x. If f(x) = 1, then x is equal to
1e
2e
12e
limx→0xe1 + x2 + x4 - 1/x - 11 + x2 + x4 - 1
does not exist
is equal to 1
is equal to e
is equal to 0