Let f : 0, ∞ → 0, ∞ be a differentiable function such that f(1) = e and limt→x t2f2x - x2f2tt - x. If f(x) = 1, then x is equal to | Limits and Derivatives

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

111.

limn1k + 2k + 3k + ... + nknk + 1 = ?

  • 1k

  • 2k + 1

  • 1k + 1

  • 2k


112.

limx0 1 - cos2x3 + cosxxtan4x = ? 

  •  - 14

  • 12

  • 1

  • 2


113.

An angle between the curves x2=3y and x2 + y2 = 4 is

  • tan-153

  • tan-153

  • tan-123

  • π3


 Multiple Choice QuestionsShort Answer Type

114.

If limx1x +x2 + x3 +... + xn - nx - 1 = 820, n  N then the value of n =?


Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

115.

limx0tanπ4 + x1x = ?

  • 2

  • 1

  • e

  • e2


 Multiple Choice QuestionsShort Answer Type

116.

limx01 - cosx221 - cosx24x8 = 2 - k, find k


117.

The value of 0 . 16log2 . 513 + 132 + 133 + ...  is


 Multiple Choice QuestionsMultiple Choice Questions

118.

limxaa + 2x13 - 3x133a + x13 - 4x13 a  0 = ?

  • 292313

  • 2343

  • 2943

  • 232913


Advertisement
Advertisement

119.

Let f : 0,   0,  be a differentiable function such that f(1) = e and limtx t2f2x - x2f2tt - x. If f(x) = 1, then x is equal to

  • 1e

  • 2e

  • 12e

  • e


A.

1e

limtx t2f2x - x2f2tt - x using L'Hospital rulelimtx2tf2x - x22ftf't1 = 0x22fxf'x - 2xf2x2xfxxf'x - fx = 0fx  0 so xf'x = fxxdydx = y1ydydx = y1ydy = 1xdxIntegration logy = logx + logCy = cx  fx = cxNow f1 = c = eso fx = exnow fx = 1ex = 1  x = 1e


Advertisement
120.

limx0xe1 + x2 + x4 - 1/x - 11 + x2 + x4 - 1

  • does not exist

  • is equal to 1

  • is equal to e

  • is equal to 0


Advertisement