limn→∞1k + 2k + 3k + ... + nknk + 1 = ?
1k
2k + 1
1k + 1
2k
limx→0 1 - cos2x3 + cosxxtan4x = ?
- 14
12
1
2
An angle between the curves x2=3y and x2 + y2 = 4 is
tan-153
tan-123
π3
If limx→1x +x2 + x3 + ... + xn - nx - 1 = 820, n ∈ N then the value of n =?
limx→0tanπ4 + x1x = ?
e
e2
limx→01 - cosx221 - cosx24x8 = 2 - k, find k
The value of 0 . 16log2 . 513 + 132 + 133 + ... ∞ is
limx→aa + 2x13 - 3x133a + x13 - 4x13 a ≠ 0 = ?
292313
2343
2943
232913
Let f : 0, ∞ → 0, ∞ be a differentiable function such that f(1) = e and limt→x t2f2x - x2f2tt - x. If f(x) = 1, then x is equal to
1e
2e
12e
A.
limt→x t2f2x - x2f2tt - x using L'Hospital rulelimt→x2tf2x - x22ftf't1 = 0x22fxf'x - 2xf2x2xfxxf'x - fx = 0fx ≠ 0 so xf'x = fxxdydx = y1ydydx = y1ydy = 1xdxIntegration logy = logx + logCy = cx ⇒ fx = cxNow f1 = c = eso fx = exnow fx = 1ex = 1 ⇒ x = 1e
limx→0xe1 + x2 + x4 - 1/x - 11 + x2 + x4 - 1
does not exist
is equal to 1
is equal to e
is equal to 0