Important Questions of ગણિતિય અનુમાનો સિદ્વાંત for JEE Mathematics | Zigya

Book Store

Download books and chapters from book store.
Currently only available for.
CBSE

Subject

Mathematics
Advertisement
zigya logo

Gujarati JEE Mathematics : ગણિતિય અનુમાનો સિદ્વાંત

Multiple Choice Questions

Advertisement
1. અસમતા 3n < (n + 1 ) !, n ∈ N એ ...... . 
  • n = 4 માટે સત્ય નથી.

  • દરેક n ≥4 માટે સત્ય છે. 
  • n = 13 માટે સત્ય નથી. 
  • દરેક n>21 માટે સત્ય છે. 

2. વિધાન p(n) : 8n ≤ 2n - 16 દરેક n >  ....... n ∈ N માટે સત્ય છે. 
  • 1

  • 4

  • 2

  • 5


3. જો 13 + 23 + 33 + ... + 503 = m2, તો m = ........... . 
  • 1275

  • 1225

  • 2450

  • 1375


4. વિધાન bold p bold left parenthesis bold n bold right parenthesis bold space bold colon bold space bold n to the power of bold 3 over bold 3 to the power of bold n bold space bold less than bold space bold n bold factorial bold space bold less than bold space bold n to the power of bold n over bold 2 to the power of bold n દરેક n ≥ k, n ∈ N માટે સત્ય છે, તો k = .......... .  
  • 6

  • 5

  • 4

  • 3


Advertisement
5. bold p bold left parenthesis bold n bold right parenthesis bold space bold colon bold space bold 2 to the power of bold 2 to the power of bold 2 end exponent નો એકમનો અંક ....... છે. n > 1 
  • 0

  • 4

  • 6

  • 2


6. bold n bold factorial bold space bold less than bold space open square brackets fraction numerator bold n bold plus bold 1 over denominator bold 2 end fraction close square brackets to the power of bold n નું પાલન થાય તેવો નાનામાં નાનો ધનપૂર્ણાંક ........ છે. જ્યાં [] મહત્તમ પૂર્ણાંક વિધેય છે.
  • 6

  • 3

  • 4

  • 2


7. વિધાન p(n) : 32n+1+2n-1 એ  n ∈ N .......... ના ગુણકમાં છે.
  • 4

  • 7

  • 5

  • 2


8. મહત્તમ ધન પૂર્ણાંક ...... વડે (n + 1) (n + 2) (n + 3) .... (n + r) ને નિ:શેષ ભાગી શકાય.  n ∈ N
  • r !

  • n!

  • n+r+1

  • (n+r)!


Advertisement
9. વિધાન p(n) : n≥ 3n ........ સત્ય છે. 
  • n ∈ N
  •  n ∈ N, n > 1
  •  n ∈ N, n ≥ 3
  • દરેક અયુગ્મ પ્રાકૃતિક સંખ્યા

10. જો bold sum from bold r bold equals bold 1 to bold k of bold r bold space bold equals bold space bold 1 over bold 2 bold space bold left parenthesis bold n to the power of bold 2 bold space bold plus bold space bold 11 bold n bold space bold plus bold space bold 30 bold right parenthesis તો  k =- ....... . 
  • n + 6 

  • n + 7

  • n + 5

  • n + 4


Advertisement

Switch