The set of solutions of the equation 3 - 1sinθ + 3 + 1cosθ = 2 is
2nπ ± π4 + π12 : n ∈ Z
2nπ ± π4 - π12 : n ∈ Z
nπ + - 1nπ4 + π12 : n ∈ Z
nπ + - 1nπ4 - π12 : n ∈ Z
If ∆ = a2 - b - c2, is the area of the ∆ABC,then tanA = ?
116
815
34
43
In a ∆∆ABC, C = 90°. Then, a2 - b2a2 + b2 = ?
sin(A + B)
sin(A - B)
cos(A + B)
cos(A - B)
The sum of angles of elevation of the top of a tower from two points distant a and b from the base and in the same straight line with it is 90°. Then, the height of the tower is
a2b
ab2
ab
If f : R → R defined byf(x) = 1 + 3x2 - cos2xx2, for x ≠ 0k, for x= 0is continuous at x = 0, then k is equal to
1
5
6
0
If f(x) = cosxcos2x. . . cosnx, then f'(x) + ∑r = 1n rtanrxfx = ?
f(x)
- f(x)
2f(x)
B.
f(x) = cosxcos2x. . . cosnxf'(x) = - sinxcos2x . cosnx + cosxddxcosxcos2x. . . cosnxf'(x) = - sinxcos2x . . . cosnx + cosx- 2sin2xcos3x . . . cosnx + cos2xddxcos3x . cos4x . . . cosnxf'(x) ⇒ - sinxcos2x . . .cosnx - 2cosxsin2xcos3x . . . cosnx + cosx . cos2x ddxcos3x . cos4x cosnxf'(x) ⇒ - sinxcos2x . . .cosnx - 2cosxsin2xcos3x . . . cosnx - 3cosxcos2x . sin3x . cosnx - ncosx cos2x . . . sinnx
So,⇒ f'(x) + ∑r = 1n rtanrxfx = f'(x) + tanx + 2tan2x + 3tan3x + . . . + ntannxfx= f'(x) + fxtanx + 2fxtan2x + 3fxtan3x + . . . + ntannxfx= f'(x) +sinx . cos2x . . .cosnx + 2cosxsin2x . . . cosnx + . . . + ncosxcos2x . . sinnx= f'(x) - f'(x) ⇒ 0Hence, f'(x) + ∑r = 1n rtanrxfx = 0
If y = cos-1a2 - x2a2 + x2 + sin-12axa2 + x2,then dydx = ?
ax2 + a2
2ax2 + a2
4ax2 + a2
a2x2 + a2
If fx = sinx + cosx,then fπ4fivπ4 = ?
2
3
4
If y = sinmsin-1x, then 1 - x2y2 - xy1 = ?Here, yn denotes dnydxn
m2y
- m2y
2m2y
- 2m2y
The height of the cone of maximum volume inscribed in a sphere of radius R is
R3
2R3
4R3