The set of solutions of the equation 3 - 1sinθ + 3 + 1cosθ = 2 is
2nπ ± π4 + π12 : n ∈ Z
2nπ ± π4 - π12 : n ∈ Z
nπ + - 1nπ4 + π12 : n ∈ Z
nπ + - 1nπ4 - π12 : n ∈ Z
If ∆ = a2 - b - c2, is the area of the ∆ABC,then tanA = ?
116
815
34
43
In a ∆∆ABC, C = 90°. Then, a2 - b2a2 + b2 = ?
sin(A + B)
sin(A - B)
cos(A + B)
cos(A - B)
The sum of angles of elevation of the top of a tower from two points distant a and b from the base and in the same straight line with it is 90°. Then, the height of the tower is
a2b
ab2
ab
If f : R → R defined byf(x) = 1 + 3x2 - cos2xx2, for x ≠ 0k, for x= 0is continuous at x = 0, then k is equal to
1
5
6
0
If f(x) = cosxcos2x. . . cosnx, then f'(x) + ∑r = 1n rtanrxfx = ?
f(x)
- f(x)
2f(x)
If y = cos-1a2 - x2a2 + x2 + sin-12axa2 + x2,then dydx = ?
ax2 + a2
2ax2 + a2
4ax2 + a2
a2x2 + a2
C.
y = cos-1a2 - x2a2 + x2 + sin-12axa2 + x2Put x = atanθ⇒ θ = tan-1xa⇒ cos-1a2 - a2tan2θa2 + a2tan2θ + sin-12a2tanθa2 + a2tan2θ⇒ y = cos-11 - tan2θ1 + tan2θ + sin-12tanθ1 + tan2θ⇒ y = cos-1cos2θ + sin-1sin2θ ∵cos2θ = 1 - tan2θ1 + tan2θ sin2θ = 2tanθ1 + tan2θ ⇒ y = 2θ + 2θ⇒ y = 4θ⇒ y = 4tan-1xadydx = 4 11 + x2a21a = 4 a2a2 + x2 . 1a⇒ dydx = 4aa2 + x2
If fx = sinx + cosx,then fπ4fivπ4 = ?
2
3
4
If y = sinmsin-1x, then 1 - x2y2 - xy1 = ?Here, yn denotes dnydxn
m2y
- m2y
2m2y
- 2m2y
The height of the cone of maximum volume inscribed in a sphere of radius R is
R3
2R3
4R3