The height of the cone of maximum volume inscribed in a sphere of

Subject

Mathematics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

41.

The  set  of  solutions  of  the  equation 3 - 1sinθ + 3 + 1cosθ = 2 is

  • 2 ± π4 + π12 : n  Z

  • 2 ± π4 - π12 : n  Z

  •  + - 1nπ4 + π12 : n  Z

  •  + - 1nπ4 - π12 : n  Z


42.

If  = a2 - b - c2, is the area of the ABC,then tanA = ?

  • 116

  • 815

  • 34

  • 43


43.

In a ABC, C = 90°. Then, a2 - b2a2 + b2 = ?

  • sin(A + B)

  • sin(A - B)

  • cos(A + B)

  • cos(A - B)


44.

The sum of angles of elevation of the top of a tower from two points distant a and b from the base and in the same straight line with it is 90°. Then, the height of the tower is

  • a2b

  • ab2

  • ab

  • ab


Advertisement
45.

If f : R  R defined byf(x) = 1 + 3x2 - cos2xx2, for x  0k, for x= 0is continuous at x = 0, then k is equal to

  • 1

  • 5

  • 6

  • 0


46.

If f(x) = cosxcos2x. . . cosnx, then f'(x) + r = 1n rtanrxfx = ?

  • f(x)

  • 0

  • - f(x)

  • 2f(x)


47.

If y = cos-1a2 - x2a2 + x2 + sin-12axa2 + x2,then dydx = ?

  • ax2 + a2

  • 2ax2 + a2

  • 4ax2 + a2

  • a2x2 + a2


48.

If fx = sinx + cosx,then fπ4fivπ4 = ?

  • 1

  • 2

  • 3

  • 4


Advertisement
49.

If y = sinmsin-1x, then 1 - x2y2 - xy1 = ?Here, yn denotes dnydxn

  • m2y

  • - m2y

  • 2m2y

  • - 2m2y


Advertisement

50.

The height of the cone of maximum volume inscribed in a sphere of radius R is

  • R3

  • 2R3

  • 4R3

  • 4R3


C.

4R3

Let the height of the cone = h

and the radius of the cone = r

Given, radius of the sphere = R

Now, In OPB

 R2 = r2 + h - R2 r2 = R2  - h - R2         = R +h - RR -h + R r2 = h2R - hThe volume of the cone isV = 13πr2h V = 13πh2R - hh V = π34Rh2 - 3h3Differentiating with r to hdVdh = 0 π34Rh - 3h2 = 0 h4R - 3h = 0 h = 0, h = 4R3    Not possibleNow, d2Vdh2 = π34R - 6hd2Vdh2at h = 4R3 = π34R - 6 . 4R3                                 = π34R - 8R = - 4π3R  Negativeie, maximumHence, the height og the cone of maximum volume is 4R3

 


Advertisement
Advertisement