The general solution of the differential equationd2ydx2 

Subject

Mathematics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

61.

If f(x + 2y, x - 2y) = xy, then f(x, y) is equal to

  • 14xy

  • 14x2 - y2

  • 18x2 - y2

  • 12x2 + y2


62.

The value of - 22xcosx + sinx + 1dx

  • 2

  • 0

  • - 2

  • 4


Advertisement

63.

The general solution of the differential equation

d2ydx2 +8dydx + 16y = 0 is

  • (A + B)e5x

  • (A + Bx)e- 4x

  • (A + Bx2)e4x

  • (A + Bx4)e4x


B.

(A + Bx)e- 4x

Given equation is,

d2ydx2 +8dydx + 16y = 0Auxillary equation is m2 + 8m + 16 = 0 m + 42 = 0  m = - 4 Solution is y = (A + Bx)e- 4x


Advertisement
64.

If x2 + y2 = 4, then ydydx + x is equal to

  • 4

  • 0

  • 1

  • - 1


Advertisement
65.

x3dx1 + x8 is equal to

  • 4tan-1x4 + C

  • 14tan-1x3 + C

  • x +4tan-1x4 + C

  • x2 +14tan-1x4 + C


66.

π16πsinxdx is equal to

  • 0

  • 32

  • 30

  • 28


67.

The degree and order of the differential equation

y = xdydx2 + dxdy2 are respectively

  • 1, 1

  • 2, 1

  • 4, 1

  • 1, 4


68.

cos2xcosxdx is equal to

  • 2sinx + logsecx +tanx + C

  • 2sinx - logsecx -tanx + C

  • 2sinx - logsecx +tanx + C

  • 2sinx + logsecx -tanx + C


Advertisement
69.

sin8x - cos8x1 - 2sin2xcos2xdx

  • - 12sin2x + C

  • 12sin2x + C

  • 12sinx + C

  • - 12sinx + C


70.

The general solution of the differential equation logedydx = x + y is

  • ex + e- y = C

  • ex + ey = C

  • ey + e- x = C

  • e- x + e- y = C


Advertisement