If f(x + 2y, x - 2y) = xy, then f(x, y) is equal to
14xy
14x2 - y2
18x2 - y2
12x2 + y2
The value of ∫- 22xcosx + sinx + 1dx
2
0
- 2
4
The general solution of the differential equation
d2ydx2 + 8dydx + 16y = 0 is
(A + B)e5x
(A + Bx)e- 4x
(A + Bx2)e4x
(A + Bx4)e4x
If x2 + y2 = 4, then ydydx + x is equal to
1
- 1
∫x3dx1 + x8 is equal to
4tan-1x4 + C
14tan-1x3 + C
x + 4tan-1x4 + C
x2 + 14tan-1x4 + C
∫π16πsinxdx is equal to
32
30
28
The degree and order of the differential equation
y = xdydx2 + dxdy2 are respectively
1, 1
2, 1
4, 1
1, 4
∫cos2xcosxdx is equal to
2sinx + logsecx + tanx + C
2sinx - logsecx - tanx + C
2sinx - logsecx + tanx + C
2sinx + logsecx - tanx + C
C.
Let I = ∫cos2xcosxdx = ∫2cos2x - 1cosxdx = ∫2cosx - ∫secxdx
= 2sinx - logsecx + tanx + C
∫sin8x - cos8x1 - 2sin2xcos2xdx
- 12sin2x + C
12sin2x + C
12sinx + C
- 12sinx + C
The general solution of the differential equation logedydx = x + y is
ex + e- y = C
ex + ey = C
ey + e- x = C
e- x + e- y = C