Solve:(1 + x) (1 + y2) dx + (1 + y) (1 + x2) dy = 0. from Mathe

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

121. Find a one parameter family of solutions of each of the following differential equation:
 (x y2 + 2x) dx + (x2 y + 2y) dy = 0
77 Views

122. Find a one parameter family of solutions of each of the following differential equation:
x y y' = 1 + x + y + x y
79 Views

123.

Solve:
dy over dx equals straight e to the power of straight x minus straight y end exponent plus straight x squared straight e to the power of straight y

79 Views

124.

Solve:
dy over dx space equals straight e to the power of straight x plus straight y end exponent plus straight x squared space straight e to the power of straight y.

79 Views

Advertisement
125.

Solve:
dy over dx space equals straight e to the power of straight x minus straight y end exponent plus straight x cubed straight e to the power of negative straight y end exponent

87 Views

126.

Solve:
x (1 + y2) dx + y (1 + x2)dy = 0  

81 Views

Advertisement

127.

Solve:
(1 + x) (1 + y2) dx + (1 + y) (1 + x2) dy = 0.


The given differential equation is
             (1 + x) (1 + y2) dx + (1 + y) (1 + x2) dy = 0
or             left parenthesis 1 plus straight x right parenthesis space left parenthesis 1 plus straight y squared right parenthesis space dx space equals space minus left parenthesis 1 plus straight y right parenthesis thin space left parenthesis 1 plus straight x squared right parenthesis space dy
or           fraction numerator 1 plus straight y over denominator 1 plus straight y squared end fraction dy space equals space minus fraction numerator 1 plus straight x over denominator 1 plus straight x squared end fraction dx space space space rightwards double arrow space space space integral fraction numerator 1 plus straight y over denominator 1 plus straight y squared end fraction dy space equals space minus integral fraction numerator 1 plus straight x over denominator 1 plus straight x squared end fraction dx
therefore space space space space integral fraction numerator 1 over denominator 1 plus straight y squared end fraction dy plus 1 half integral fraction numerator 2 straight y over denominator 1 plus straight y squared end fraction dy space equals space minus integral fraction numerator 1 over denominator 1 plus straight x squared end fraction dx minus 1 half integral fraction numerator 2 straight x over denominator 1 plus straight x squared end fraction dx
therefore space space space space space tan to the power of negative 1 end exponent straight y space plus space 1 half space log space left parenthesis 1 plus straight y squared right parenthesis space equals space minus tan to the power of negative 1 end exponent straight x space minus space 1 half log left parenthesis 1 plus straight x squared right parenthesis space plus straight c
or         tan to the power of negative 1 end exponent straight x plus tan to the power of negative 1 end exponent straight y plus 1 half open square brackets log space left parenthesis 1 plus straight x squared right parenthesis space plus space log space left parenthesis 1 plus straight y squared right parenthesis close square brackets space equals space straight c
or            tan to the power of negative 1 end exponent straight x plus tan to the power of negative 1 end exponent straight y plus 1 half log space open square brackets left parenthesis 1 plus straight x squared right parenthesis thin space left parenthesis 1 plus straight y squared right parenthesis close square brackets space equals space straight c space is space the space required space solution. space
81 Views

Advertisement
128.

For the following differential equation, find the general solution:
dy over dx equals fraction numerator 1 minus cosx over denominator 1 plus cosx end fraction

79 Views

Advertisement
129.

For the following differential equation, find the general solution:
dy over dx space equals sin to the power of negative 1 end exponent straight x

76 Views

130. Solve 3ex tan y dx + (1 + ex) sec2 y dy = 0. 
78 Views

Advertisement