For the following differential equation, find the general soluti

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

121. Find a one parameter family of solutions of each of the following differential equation:
 (x y2 + 2x) dx + (x2 y + 2y) dy = 0
77 Views

122. Find a one parameter family of solutions of each of the following differential equation:
x y y' = 1 + x + y + x y
79 Views

123.

Solve:
dy over dx equals straight e to the power of straight x minus straight y end exponent plus straight x squared straight e to the power of straight y

79 Views

124.

Solve:
dy over dx space equals straight e to the power of straight x plus straight y end exponent plus straight x squared space straight e to the power of straight y.

79 Views

Advertisement
125.

Solve:
dy over dx space equals straight e to the power of straight x minus straight y end exponent plus straight x cubed straight e to the power of negative straight y end exponent

87 Views

126.

Solve:
x (1 + y2) dx + y (1 + x2)dy = 0  

81 Views

127.

Solve:
(1 + x) (1 + y2) dx + (1 + y) (1 + x2) dy = 0.

81 Views

128.

For the following differential equation, find the general solution:
dy over dx equals fraction numerator 1 minus cosx over denominator 1 plus cosx end fraction

79 Views

Advertisement
Advertisement

129.

For the following differential equation, find the general solution:
dy over dx space equals sin to the power of negative 1 end exponent straight x


The given differential equation is
                    dy over dx space equals space sin to the power of negative 1 end exponent straight x
Separating the variables and integrating,
                       integral space dy space equals space integral space sin to the power of negative 1 end exponent straight x space dx
therefore space space space space space space space space space space space space integral space 1 space dy space equals space integral space sin to the power of negative 1 end exponent straight x. space 1 space dx
therefore space space space space space space space space space space straight y space equals space left parenthesis sin to the power of negative 1 end exponent straight x right parenthesis. space straight x space minus space space integral fraction numerator 1 over denominator square root of 1 minus straight x squared end root end fraction. straight x space dx
or space space space space space space space space space space space space space space space space space space space straight y space equals space straight x space sin to the power of negative 1 end exponent straight x space plus space 1 half integral left parenthesis 1 minus straight x squared right parenthesis to the power of negative 1 half end exponent left parenthesis negative 2 space straight x right parenthesis space dx
therefore space space space space space space space space space space space space space space space space space space space straight y space equals space straight x space sin to the power of negative 1 end exponent straight x space plus space 1 half fraction numerator left parenthesis 1 minus straight x squared right parenthesis to the power of begin display style 1 half end style end exponent over denominator begin display style 1 half end style end fraction plus straight c
therefore space space space space space space space space space space space space space space space space space space space space straight y space equals space straight x space sin to the power of negative 1 end exponent straight x space plus space square root of 1 minus straight x squared end root plus straight c
which is the required solution.
76 Views

Advertisement
130. Solve 3ex tan y dx + (1 + ex) sec2 y dy = 0. 
78 Views

Advertisement