For the following differential equation, find the general soluti

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

121. Find a one parameter family of solutions of each of the following differential equation:
 (x y2 + 2x) dx + (x2 y + 2y) dy = 0
77 Views

122. Find a one parameter family of solutions of each of the following differential equation:
x y y' = 1 + x + y + x y
79 Views

123.

Solve:
dy over dx equals straight e to the power of straight x minus straight y end exponent plus straight x squared straight e to the power of straight y

79 Views

124.

Solve:
dy over dx space equals straight e to the power of straight x plus straight y end exponent plus straight x squared space straight e to the power of straight y.

79 Views

Advertisement
125.

Solve:
dy over dx space equals straight e to the power of straight x minus straight y end exponent plus straight x cubed straight e to the power of negative straight y end exponent

87 Views

126.

Solve:
x (1 + y2) dx + y (1 + x2)dy = 0  

81 Views

127.

Solve:
(1 + x) (1 + y2) dx + (1 + y) (1 + x2) dy = 0.

81 Views

Advertisement

128.

For the following differential equation, find the general solution:
dy over dx equals fraction numerator 1 minus cosx over denominator 1 plus cosx end fraction


The given differential equation is
                     dy over dx space equals space fraction numerator 1 minus cosx over denominator 1 plus cosx end fraction

or         dy space equals space fraction numerator 1 minus cosx over denominator 1 plus cosx end fraction dx space space space or space space space space integral dy space equals space fraction numerator 1 minus cosx over denominator 1 plus cosx end fraction dx

therefore space space space space space integral dy space equals space integral fraction numerator 2 space sin squared begin display style straight x over 2 end style over denominator 2 space cos squared space begin display style straight x over 2 end style end fraction dx space space or space space space integral space 1. space dy space equals space integral tan squared straight x over 2 dx
or     integral 1. space dy space equals space integral open parentheses sec squared straight x over 2 minus 1 close parentheses space dx comma space space or space space space straight y space equals space fraction numerator tan begin display style straight x over 2 end style over denominator begin display style 1 half end style end fraction minus straight x plus straight c
or       straight y space equals space 2 space tan straight x over 2 minus straight x plus straight c which is the required solution. 
79 Views

Advertisement
Advertisement
129.

For the following differential equation, find the general solution:
dy over dx space equals sin to the power of negative 1 end exponent straight x

76 Views

130. Solve 3ex tan y dx + (1 + ex) sec2 y dy = 0. 
78 Views

Advertisement