Show that the following differential equation is homogeneous and

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsLong Answer Type

201. Show that the following differential equation is homogeneous and find a primitive of it. Derive the solution wherever possible:
1 over straight x cos straight y over straight x dx minus open parentheses straight x over straight y sin straight y over straight x plus cos straight y over straight x close parentheses dy space equals 0

74 Views

202. Show that the following differential equation is homogeneous and find a primitive of it. Derive the solution wherever possible:
2 space straight y space straight e to the power of straight x over 4 end exponent space dx plus open parentheses straight y minus 2 space straight x space straight e to the power of straight x over straight y end exponent close parentheses space dy space equals space 0


73 Views

Advertisement

203. Show that the following differential equation is homogeneous and find a primitive of it. Derive the solution wherever possible:
straight y space dx space plus space straight x space open parentheses log space straight y over straight x close parentheses space dy space minus space 2 space straight x space dy space equals space 0




The given differential equation is
    straight y space dx plus straight x space log space open parentheses straight y over straight x close parentheses space dy space minus 2 straight x space dy space equals space 0
therefore space space straight x space open parentheses 2 minus log space straight y over straight x close parentheses space dy space equals space straight y space dx
therefore space space space space space space space space space space space space space space space space space space space space space dy over dx equals fraction numerator begin display style straight y over straight x end style over denominator 2 minus log space begin display style straight y over straight x end style end fraction
Put y = v x so that dy over dx equals straight v plus dv over dx
therefore space space space space space space space space space straight v plus straight x dv over dx equals fraction numerator straight v over denominator 2 minus log space straight v end fraction
therefore space space space space space space space space straight x space dv over dx space equals space fraction numerator straight v over denominator 2 minus log space straight v end fraction minus straight v
therefore space space space space straight x dv over dx equals fraction numerator straight v minus 2 straight v plus straight v space log space straight v over denominator 2 minus log space straight v end fraction
therefore space space space space space straight x dv over dx space equals space fraction numerator negative straight v plus straight v space log space straight v over denominator 2 minus space log space straight v end fraction

therefore space space space space fraction numerator 2 minus space log space straight v over denominator negative straight v plus straight v space log space straight v end fraction dv space equals space 1 over straight x dx
therefore space space space space integral fraction numerator 1 minus log space left parenthesis straight v minus 1 right parenthesis over denominator straight v left parenthesis log space straight v minus 1 right parenthesis space end fraction dv space equals space integral 1 over straight x dx
therefore space space space space integral fraction numerator 1 over denominator straight v left parenthesis log space straight v minus 1 right parenthesis end fraction dv space minus space integral 1 over straight v dv space equals space integral 1 over straight x dx
therefore space space space integral fraction numerator begin display style 1 over straight v end style over denominator log space straight v minus 1 end fraction dv space minus space integral 1 over straight v dv space equals space integral 1 over straight x dx
therefore space space space log space open vertical bar log space space straight v minus 1 close vertical bar space minus space log space open vertical bar straight v close vertical bar space equals space log space open vertical bar straight x close vertical bar space plus space log space open vertical bar straight c close vertical bar
therefore space space space log space open vertical bar fraction numerator log space straight v minus 1 over denominator straight v end fraction close vertical bar space equals space log space left parenthesis open vertical bar cx close vertical bar right parenthesis
therefore space space space space log space open vertical bar fraction numerator log space begin display style straight y over straight x end style minus 1 over denominator begin display style straight y over straight x end style end fraction close vertical bar space equals space log space left parenthesis open vertical bar straight c space straight x close vertical bar right parenthesis
therefore space space space space space space fraction numerator log space begin display style straight y over straight x end style minus 1 over denominator begin display style straight y over straight x end style end fraction space equals straight c space straight x
therefore space space space log space straight y over straight x minus 1 space equals space straight c space straight y space is space the space required space solution.

74 Views

Advertisement
204. Show that the given differential equation is homogeneous and solve it:
left parenthesis straight x squared plus xy right parenthesis space dy space equals space left parenthesis straight x squared plus straight y squared right parenthesis space dx

75 Views

Advertisement

 Multiple Choice QuestionsShort Answer Type

205. Show that the given differential equation is homogeneous and solve it:
straight y apostrophe space equals space fraction numerator straight x plus straight y over denominator straight x end fraction


73 Views

206. Show that the given differential equation is homogeneous and solve it:
(x-y) dy - (x+y) dx = 0



74 Views

207. Show that the given differential equation is homogeneous and solve it:
open parentheses straight x squared minus straight y squared close parentheses space dx space plus space 2 xy space dy space equals space 0




80 Views

 Multiple Choice QuestionsLong Answer Type

208. Show that the given differential equation is homogeneous and solve it:
straight x squared dy over dx space equals space straight x squared minus 2 straight y squared plus straight x space straight y





73 Views

Advertisement
209. Show that the given differential equation is homogeneous and solve it:
open curly brackets straight x space cos space open parentheses straight y over straight x close parentheses plus straight y space sin space open parentheses straight y over straight x close parentheses close curly brackets straight y space dx space equals space open curly brackets straight y space sin space open parentheses straight y over straight x close parentheses minus straight x space cos space open parentheses straight y over straight x close parentheses close curly brackets space straight x space dy






76 Views

210. Solve straight x space dy space minus space straight y space dx space equals space square root of straight x squared plus straight y squared end root space dx.






79 Views

Advertisement