Show that the given differential equation is homogeneous and so

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsLong Answer Type

201. Show that the following differential equation is homogeneous and find a primitive of it. Derive the solution wherever possible:
1 over straight x cos straight y over straight x dx minus open parentheses straight x over straight y sin straight y over straight x plus cos straight y over straight x close parentheses dy space equals 0

74 Views

202. Show that the following differential equation is homogeneous and find a primitive of it. Derive the solution wherever possible:
2 space straight y space straight e to the power of straight x over 4 end exponent space dx plus open parentheses straight y minus 2 space straight x space straight e to the power of straight x over straight y end exponent close parentheses space dy space equals space 0


73 Views

203. Show that the following differential equation is homogeneous and find a primitive of it. Derive the solution wherever possible:
straight y space dx space plus space straight x space open parentheses log space straight y over straight x close parentheses space dy space minus space 2 space straight x space dy space equals space 0



74 Views

Advertisement

204. Show that the given differential equation is homogeneous and solve it:
left parenthesis straight x squared plus xy right parenthesis space dy space equals space left parenthesis straight x squared plus straight y squared right parenthesis space dx


The given differential equation is
                        open parentheses straight x squared plus straight x space straight y close parentheses dy space equals space left parenthesis straight x squared plus straight y squared right parenthesis space dx
or                dy over dx space equals space fraction numerator straight x squared plus straight y squared over denominator straight x squared plus xy end fraction                                    ...(1)
It is a differential equation of the form dy over dx space equals space straight F left parenthesis straight x comma space straight y right parenthesis
Here,          straight F left parenthesis straight x comma space straight y right parenthesis space equals space fraction numerator straight x squared plus straight y squared over denominator straight x squared plus straight x space straight y end fraction
Replacing x by λx space and space straight y space by space λy comma we get
                    straight F left parenthesis λx comma space λy right parenthesis space equals space fraction numerator straight lambda squared straight x squared plus straight lambda squared straight y squared over denominator straight lambda squared straight x squared plus straight lambda squared xy end fraction space equals space fraction numerator straight lambda squared left parenthesis straight x squared plus straight y squared right parenthesis over denominator straight lambda squared left parenthesis straight x squared plus xy right parenthesis end fraction space equals space straight lambda degree space left square bracket straight F space left parenthesis straight x comma space straight y right parenthesis right square bracket
therefore space space space straight F left parenthesis straight x comma space straight y right parenthesis is a homogeneous function of degree zero.
therefore space space spacegiven differential equation is a homogeneous differential equation.
Put y = v x so that dy over dx space equals space straight v plus straight x dv over dx
therefore space space space from space left parenthesis 1 right parenthesis comma space space straight v plus straight x dv over dx space equals space fraction numerator straight x squared plus straight v squared straight x squared over denominator straight x squared plus vx squared end fraction
rightwards double arrow space space space straight v plus straight x dv over dx space equals space fraction numerator 1 plus straight v squared over denominator 1 plus straight v end fraction space space space space rightwards double arrow space space space straight x dv over straight d space equals space fraction numerator 1 plus straight v squared over denominator 1 plus straight v end fraction minus straight v
therefore space space space space straight x dv over dx space equals space fraction numerator 1 minus straight v over denominator 1 plus straight v end fraction space space space space rightwards double arrow space space space fraction numerator 1 plus straight v over denominator 1 minus straight v end fraction dv space equals space 1 over straight x dx space space space rightwards double arrow space space space space integral open parentheses negative 1 plus fraction numerator 2 over denominator 1 minus straight v end fraction close parentheses dv space equals space integral 1 over straight x dx
therefore space space space space space minus straight v minus 2 space log space left parenthesis 1 minus straight v right parenthesis space equals space log space straight x space plus straight c
rightwards double arrow space space space minus straight y over straight x minus 2 log space open parentheses 1 minus straight y over straight x close parentheses space equals space log space straight x space plus space straight c
rightwards double arrow space space space space minus straight y minus 2 straight x space log space open parentheses fraction numerator straight x minus straight y over denominator straight x end fraction close parentheses space equals space straight x space log space straight x space plus space straight c space straight x
which is required solution. 

75 Views

Advertisement
Advertisement

 Multiple Choice QuestionsShort Answer Type

205. Show that the given differential equation is homogeneous and solve it:
straight y apostrophe space equals space fraction numerator straight x plus straight y over denominator straight x end fraction


73 Views

206. Show that the given differential equation is homogeneous and solve it:
(x-y) dy - (x+y) dx = 0



74 Views

207. Show that the given differential equation is homogeneous and solve it:
open parentheses straight x squared minus straight y squared close parentheses space dx space plus space 2 xy space dy space equals space 0




80 Views

 Multiple Choice QuestionsLong Answer Type

208. Show that the given differential equation is homogeneous and solve it:
straight x squared dy over dx space equals space straight x squared minus 2 straight y squared plus straight x space straight y





73 Views

Advertisement
209. Show that the given differential equation is homogeneous and solve it:
open curly brackets straight x space cos space open parentheses straight y over straight x close parentheses plus straight y space sin space open parentheses straight y over straight x close parentheses close curly brackets straight y space dx space equals space open curly brackets straight y space sin space open parentheses straight y over straight x close parentheses minus straight x space cos space open parentheses straight y over straight x close parentheses close curly brackets space straight x space dy






76 Views

210. Solve straight x space dy space minus space straight y space dx space equals space square root of straight x squared plus straight y squared end root space dx.






79 Views

Advertisement