Show that the given differential equation is homogeneous and so

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsLong Answer Type

201. Show that the following differential equation is homogeneous and find a primitive of it. Derive the solution wherever possible:
1 over straight x cos straight y over straight x dx minus open parentheses straight x over straight y sin straight y over straight x plus cos straight y over straight x close parentheses dy space equals 0

74 Views

202. Show that the following differential equation is homogeneous and find a primitive of it. Derive the solution wherever possible:
2 space straight y space straight e to the power of straight x over 4 end exponent space dx plus open parentheses straight y minus 2 space straight x space straight e to the power of straight x over straight y end exponent close parentheses space dy space equals space 0


73 Views

203. Show that the following differential equation is homogeneous and find a primitive of it. Derive the solution wherever possible:
straight y space dx space plus space straight x space open parentheses log space straight y over straight x close parentheses space dy space minus space 2 space straight x space dy space equals space 0



74 Views

204. Show that the given differential equation is homogeneous and solve it:
left parenthesis straight x squared plus xy right parenthesis space dy space equals space left parenthesis straight x squared plus straight y squared right parenthesis space dx

75 Views

Advertisement

 Multiple Choice QuestionsShort Answer Type

205. Show that the given differential equation is homogeneous and solve it:
straight y apostrophe space equals space fraction numerator straight x plus straight y over denominator straight x end fraction


73 Views

206. Show that the given differential equation is homogeneous and solve it:
(x-y) dy - (x+y) dx = 0



74 Views

207. Show that the given differential equation is homogeneous and solve it:
open parentheses straight x squared minus straight y squared close parentheses space dx space plus space 2 xy space dy space equals space 0




80 Views

 Multiple Choice QuestionsLong Answer Type

Advertisement

208. Show that the given differential equation is homogeneous and solve it:
straight x squared dy over dx space equals space straight x squared minus 2 straight y squared plus straight x space straight y






The given differential equation is
            space straight x squared dy over dx space equals space straight x squared minus 2 straight y squared plus xy
or     dy over dx space equals fraction numerator straight x squared minus 2 straight y squared plus straight x space straight y over denominator straight x squared end fraction                            ...(1)
It is a differential equation of the form dy over dx space equals space straight F left parenthesis straight x comma space straight y right parenthesis
Here,       straight F left parenthesis straight x comma space straight y right parenthesis space equals space fraction numerator straight x squared minus 2 straight y squared plus straight x space straight y over denominator straight x squared end fraction
Replacing x by λx and y by λy, we get.
                straight F left parenthesis λx comma space λy right parenthesis space equals space fraction numerator straight lambda squared straight x squared minus 2 straight lambda squared straight y squared plus straight lambda squared straight x space straight y over denominator straight lambda squared straight x squared end fraction space equals space fraction numerator straight lambda squared left parenthesis straight x squared minus 2 straight y squared plus xy right parenthesis over denominator straight lambda squared straight x squared end fraction space equals space straight lambda degree space left square bracket straight F left parenthesis straight x comma space straight y right parenthesis right square bracket               

∴ F(x, y) is a homogeneous function of degree zero.
∴      given differential equation is a homogeneous differential equation.
Put   y = vx   rightwards double arrow space space dy over dx space equals space straight v. space 1 space space plus straight x space dv over dx
Substituting these values of y and dy over dx in the given equation, we get
                  straight v plus straight x dv over dx space equals space fraction numerator straight x squared minus 2 straight v squared straight x squared plus vx squared over denominator straight x squared end fraction      
or                  straight v plus straight x dv over dx equals 1 minus 2 straight v squared plus straight v space space space space space rightwards double arrow space space space space space straight x dv over dx equals 1 minus 2 straight v squared
rightwards double arrow space space space space space space space space 1 over straight x dx space equals space fraction numerator 1 over denominator 1 minus 2 straight v squared end fraction dv
Integrating, integral 1 over straight x dx space equals space integral fraction numerator 1 over denominator 1 minus 2 straight v squared end fraction dv
therefore space space space space space integral 1 over straight x dx space equals space 1 half integral fraction numerator dv over denominator open parentheses begin display style fraction numerator 1 over denominator square root of 2 end fraction end style close parentheses squared minus straight v squared end fraction
therefore space space space space space log space open vertical bar straight x close vertical bar space space equals 1 half. space fraction numerator 1 over denominator 2. space begin display style fraction numerator 1 over denominator square root of 2 end fraction end style end fraction log space open vertical bar fraction numerator begin display style fraction numerator 1 over denominator square root of 2 end fraction end style plus straight v over denominator begin display style fraction numerator 1 over denominator square root of 2 end fraction end style minus straight v end fraction close vertical bar plus straight c
rightwards double arrow space space space space space space space log space open vertical bar straight x close vertical bar space equals space fraction numerator 1 over denominator 2 square root of 2 end fraction space log space space open vertical bar fraction numerator 1 plus square root of 2 space straight v over denominator 1 minus square root of 2 straight v end fraction close vertical bar plus straight c
rightwards double arrow space space space log space open vertical bar straight x close vertical bar space equals space fraction numerator 1 over denominator 2 square root of 2 end fraction log space open vertical bar fraction numerator 1 plus square root of 2. space begin display style straight y over straight x end style over denominator 1 minus square root of 2. begin display style straight y over straight x end style end fraction close vertical bar plus straight c
rightwards double arrow space space space space log space open vertical bar straight x close vertical bar space equals space fraction numerator 1 over denominator 2 square root of 2 end fraction log space open vertical bar fraction numerator straight x plus square root of 2 straight y over denominator straight x minus square root of 2 straight y end fraction close vertical bar plus straight c

73 Views

Advertisement
Advertisement
209. Show that the given differential equation is homogeneous and solve it:
open curly brackets straight x space cos space open parentheses straight y over straight x close parentheses plus straight y space sin space open parentheses straight y over straight x close parentheses close curly brackets straight y space dx space equals space open curly brackets straight y space sin space open parentheses straight y over straight x close parentheses minus straight x space cos space open parentheses straight y over straight x close parentheses close curly brackets space straight x space dy






76 Views

210. Solve straight x space dy space minus space straight y space dx space equals space square root of straight x squared plus straight y squared end root space dx.






79 Views

Advertisement