Find a one parameter family of solutions of each of the followin

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

211. Find a one parameter family of solutions of each of the following differential equation:
y2 + x2 y' = x y y'
74 Views

 Multiple Choice QuestionsLong Answer Type

Advertisement

212. Find a one parameter family of solutions of each of the following differential equation:
(y2 – 2xy) dx = (x2 – 2xy) dy


The given differential equation is
                       (y2 – 2xy) dx = (x2 – 2xy) dy
or               dy over dx space equals fraction numerator straight y squared minus 2 xy over denominator straight x squared minus 2 xy end fraction
Put y = v x so that dy over dx space equals space straight v plus straight x dv over dx
therefore space space space space space space space space straight v plus straight x dv over dx space equals space fraction numerator straight v squared straight x squared minus 2 vx squared over denominator straight x squared minus 2 vx squared end fraction
therefore space space space space space space space straight v plus straight x dv over dx space equals fraction numerator straight v squared minus 2 straight v over denominator 1 minus 2 straight v end fraction
therefore space space space space space space space space space space straight x dv over dx space equals space fraction numerator straight v squared minus 2 straight v over denominator 1 minus 2 straight v end fraction minus straight v space equals space fraction numerator straight v squared minus 2 straight v minus straight v plus 2 straight v squared over denominator 1 minus 2 straight v end fraction
therefore space space space space space space space straight x dv over dx space equals space fraction numerator 3 straight v squared minus 3 straight v over denominator 1 minus 2 straight v end fraction
Separating the variables and integrating, we get,
                   integral fraction numerator 1 minus 2 straight v over denominator 3 straight v squared minus 3 straight v end fraction equals space space integral 1 over straight x dx space space or space space 1 third integral fraction numerator 1 minus 2 straight v over denominator straight v squared minus straight v end fraction dv space equals integral 1 over straight x dx
therefore space space space space minus 1 third space log space left parenthesis straight v squared minus straight v right parenthesis space equals space log space straight x plus space log space straight c
therefore space space space space log space left parenthesis straight v squared minus straight v right parenthesis to the power of fraction numerator negative 1 over denominator 3 end fraction end exponent space equals space log space cx space
therefore space space space space space space space space space space space left parenthesis straight v squared minus straight v right parenthesis to the power of negative 1 third end exponent space equals space straight c space straight x
therefore space space space space space space space open parentheses straight y squared over straight x squared minus straight y over straight x close parentheses to the power of negative 1 third end exponent space equals space space straight c space straight x
therefore space space space space space space open parentheses straight y squared minus straight x space straight y close parentheses to the power of negative 1 third end exponent space equals space cx space cross times space straight x to the power of fraction numerator negative 2 over denominator 3 end fraction end exponent
therefore space space space space space space space space left parenthesis straight y squared minus straight x space straight y right parenthesis to the power of fraction numerator negative 1 over denominator 3 end fraction end exponent space equals space straight c space straight x to the power of 1 third end exponent
therefore space space space space space space space space space left parenthesis straight y squared minus straight x space straight y right parenthesis to the power of negative 1 end exponent space equals space Ax
therefore space space space space space space fraction numerator 1 over denominator straight y squared minus xy end fraction space equals space Ax
or space space space xy squared minus straight x squared straight y space equals space straight c comma space which space is space required space solution. space      
76 Views

Advertisement
213. Find a one parameter family of solutions of each of the following differential equation:
y2 dx + (x2 – x y + y2) dy = 0
75 Views

214. Find a one parameter family of solutions of each of the following differential equation:
 (x2 + x y) dy = (x2 + y2) dx  
75 Views

Advertisement
215. Solve the following differential equation:
open parentheses 1 plus straight e to the power of straight x over straight y end exponent close parentheses space dx space plus space straight e to the power of straight x over straight y end exponent space open parentheses 1 minus straight x over straight y close parentheses dy space equals space 0.
72 Views

 Multiple Choice QuestionsShort Answer Type

216.

Solve open parentheses straight x space sin space straight y over straight x close parentheses dy space equals open parentheses straight y space sin space straight y over straight x minus straight x close parentheses dx

82 Views

 Multiple Choice QuestionsLong Answer Type

217.

Show that the differential equation straight x space cos space open parentheses straight y over straight x close parentheses dy over dx space equals straight y space cos space open parentheses straight y over straight x close parentheses plus straight x is homogeneous and solve it. 

74 Views

218.

Show that the differential equation:
left parenthesis straight x space dy space minus space straight y space dx right parenthesis space straight y space sin space open parentheses straight y over straight x close parentheses space equals space left parenthesis straight y space dx space plus space straight x space dy right parenthesis space straight x space cos space open parentheses straight y over straight x close parentheses 

72 Views

Advertisement

 Multiple Choice QuestionsShort Answer Type

219.

Solve:
straight y space straight e to the power of straight x over straight y end exponent dx space equals open parentheses xe to the power of straight x over straight y end exponent plus straight y squared close parentheses space space dy comma space space space straight y not equal to 0

79 Views

220.

Solve:
straight x dy over dx minus straight y plus straight x space tan straight y over straight x equals 0

73 Views

Advertisement