Find a one parameter family of solutions of each of the followin

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

211. Find a one parameter family of solutions of each of the following differential equation:
y2 + x2 y' = x y y'
74 Views

 Multiple Choice QuestionsLong Answer Type

212. Find a one parameter family of solutions of each of the following differential equation:
(y2 – 2xy) dx = (x2 – 2xy) dy
76 Views

213. Find a one parameter family of solutions of each of the following differential equation:
y2 dx + (x2 – x y + y2) dy = 0
75 Views

Advertisement

214. Find a one parameter family of solutions of each of the following differential equation:
 (x2 + x y) dy = (x2 + y2) dx  


The given differential equation is
                                      (x2 + x y) dy = (x2 + y2) dx  
or                     dy over dx space equals space fraction numerator straight x squared plus straight y squared over denominator straight x squared plus xy end fraction                                   ...(1)
Put y = v x so that dy over dx equals straight v plus straight x dv over dx
therefore space space space from space left parenthesis 1 right parenthesis comma space space space space straight v plus straight x dv over dx equals fraction numerator straight x squared plus straight v squared space straight x squared over denominator straight x squared plus straight v space straight x squared end fraction
rightwards double arrow space space space space straight v plus straight x dv over dx equals fraction numerator 1 plus straight v squared over denominator 1 plus straight v end fraction space space space space space space space rightwards double arrow space space space straight x dv over dx space equals fraction numerator 1 plus straight v squared over denominator 1 plus straight v end fraction minus straight v
therefore space space space space straight x dv over dx space equals space fraction numerator 1 minus straight v over denominator 1 plus straight v end fraction space space space space rightwards double arrow space space space space fraction numerator 1 plus straight v over denominator 1 minus straight v end fraction dv space equals space 1 over straight x dx space space space space rightwards double arrow space space integral open parentheses negative 1 plus fraction numerator 2 over denominator 1 minus straight v end fraction close parentheses dv space equals integral 1 over straight x dx
therefore space space minus straight v minus 2 space log space left parenthesis 1 minus straight v right parenthesis space equals space log space straight x space plus straight c space space space space rightwards double arrow space space space space space minus straight y over straight x minus 2 space log space open parentheses 1 minus straight y over straight x close parentheses space equals space log space straight x plus straight c
therefore space space space space space straight y minus 2 straight x space log space open parentheses fraction numerator straight x minus straight y over denominator straight x end fraction close parentheses space equals space straight x space logx plus space cx
which is required solution. 
75 Views

Advertisement
Advertisement
215. Solve the following differential equation:
open parentheses 1 plus straight e to the power of straight x over straight y end exponent close parentheses space dx space plus space straight e to the power of straight x over straight y end exponent space open parentheses 1 minus straight x over straight y close parentheses dy space equals space 0.
72 Views

 Multiple Choice QuestionsShort Answer Type

216.

Solve open parentheses straight x space sin space straight y over straight x close parentheses dy space equals open parentheses straight y space sin space straight y over straight x minus straight x close parentheses dx

82 Views

 Multiple Choice QuestionsLong Answer Type

217.

Show that the differential equation straight x space cos space open parentheses straight y over straight x close parentheses dy over dx space equals straight y space cos space open parentheses straight y over straight x close parentheses plus straight x is homogeneous and solve it. 

74 Views

218.

Show that the differential equation:
left parenthesis straight x space dy space minus space straight y space dx right parenthesis space straight y space sin space open parentheses straight y over straight x close parentheses space equals space left parenthesis straight y space dx space plus space straight x space dy right parenthesis space straight x space cos space open parentheses straight y over straight x close parentheses 

72 Views

Advertisement

 Multiple Choice QuestionsShort Answer Type

219.

Solve:
straight y space straight e to the power of straight x over straight y end exponent dx space equals open parentheses xe to the power of straight x over straight y end exponent plus straight y squared close parentheses space space dy comma space space space straight y not equal to 0

79 Views

220.

Solve:
straight x dy over dx minus straight y plus straight x space tan straight y over straight x equals 0

73 Views

Advertisement