Find a one parameter family of solutions of each of the followin

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

211. Find a one parameter family of solutions of each of the following differential equation:
y2 + x2 y' = x y y'
74 Views

 Multiple Choice QuestionsLong Answer Type

212. Find a one parameter family of solutions of each of the following differential equation:
(y2 – 2xy) dx = (x2 – 2xy) dy
76 Views

Advertisement

213. Find a one parameter family of solutions of each of the following differential equation:
y2 dx + (x2 – x y + y2) dy = 0


The given differential equation is
              y2 dx + (x2 – x y + y2) dy = 0      or      (x2 – x y + y2) dy = -  y2 dx
therefore space space space space space space space space space space space space space space space space space space space space dy over dx equals negative fraction numerator straight y squared over denominator straight x squared minus xy plus straight y squared end fraction
Put y = vx so that  dy over dx equals straight v plus straight x dv over dx
therefore space space space space space space straight v plus straight x dv over dx equals negative fraction numerator straight v squared straight x squared over denominator straight x squared minus vx squared plus straight v squared straight x squared end fraction
therefore space space space space space straight v plus straight x dv over dx equals negative fraction numerator straight v squared over denominator 1 minus straight v plus straight v squared end fraction
therefore space space space space space space straight x dv over dx space equals space minus fraction numerator straight v squared over denominator 1 minus straight v plus straight v squared end fraction minus straight v
therefore space space space space space straight x dv over dx equals fraction numerator negative straight v squared minus straight v plus straight v squared minus straight v cubed over denominator 1 minus straight v plus straight v squared end fraction
therefore space space space space space space straight x dv over dx equals fraction numerator negative straight v minus straight v cubed over denominator 1 minus straight v plus straight v squared end fraction
therefore space space fraction numerator 1 minus straight v plus straight v squared over denominator straight v plus straight v cubed end fraction dv space equals space minus 1 over straight x dx
therefore space space space space space integral fraction numerator 1 minus straight v plus straight v squared over denominator straight v left parenthesis 1 plus straight v squared right parenthesis end fraction space identical to space straight A over straight v plus fraction numerator Bv plus straight c over denominator 1 plus straight v squared end fraction
     Multiplying both sides by v (1 + v2), we get.
                        1 minus straight v plus straight v squared space equals space straight A thin space left parenthesis 1 plus straight v squared right parenthesis space plus space Bv squared plus Cv                  ...(1)
Put                       v = 0 in (1)
therefore space space space space space space 1 minus 0 plus 0 space equals space straight A space left parenthesis 1 plus 0 right parenthesis space plus space 0 space plus space 0. space space space space space space rightwards double arrow space space space straight A space equals space 1
Equating coefficients in (1) of
straight v squared right parenthesis               1 = A + B                 rightwards double arrow 1 space equals 1 space plus space straight B space space space space space space space space space space space space space space space space rightwards double arrow space space space straight B space equals space 0
v)                 -1 = C                       rightwards double arrow space straight C space equals space minus 1
therefore space space space space space fraction numerator 1 minus straight v plus straight v squared over denominator straight v left parenthesis 1 plus straight v squared right parenthesis end fraction identical to 1 over straight v plus fraction numerator negative 1 over denominator 1 plus straight v squared end fraction
therefore space space space space space from space left parenthesis 1 right parenthesis comma space we space get
             integral open parentheses 1 over straight v minus fraction numerator 1 over denominator 1 plus straight v squared end fraction close parentheses space dv space equals space minus integral 1 over straight x dx

therefore space space log space open vertical bar straight v close vertical bar space minus space tan to the power of negative 1 end exponent straight v space equals space space minus space log space open vertical bar straight x close vertical bar space plus space straight c
therefore space space space log space open vertical bar straight y over straight x close vertical bar space minus space tan to the power of negative 1 end exponent straight y over straight x space equals space minus log space open vertical bar straight x close vertical bar space plus space log space straight A
therefore space space space log space open vertical bar straight y close vertical bar space minus space log space open vertical bar straight x close vertical bar space minus space tan to the power of negative 1 end exponent straight y over straight x space equals space minus log space open vertical bar straight x close vertical bar plus space space log space straight A
therefore space space space log space open vertical bar straight y close vertical bar minus log space straight A space equals space space tan to the power of negative 1 end exponent straight y over straight x
therefore space space space log space open vertical bar fraction numerator open vertical bar straight y close vertical bar over denominator straight A end fraction close vertical bar space equals tan to the power of negative 1 end exponent straight y over straight x space space space space rightwards double arrow space space space space fraction numerator open vertical bar straight y close vertical bar over denominator straight A end fraction space equals space straight e to the power of tan to the power of negative 1 end exponent straight y over straight x end exponent
therefore space space space space space space space space space space space space space space space space space space open vertical bar straight y close vertical bar space equals space Ae to the power of tan to the power of negative 1 end exponent straight y over straight x end exponent
therefore space space space space space space space space space space space space space space space space space space straight y squared space equals space space straight c space straight e space to the power of 2 space tan to the power of negative 1 end exponent straight y over straight x end exponent
is the required solution. 
75 Views

Advertisement
214. Find a one parameter family of solutions of each of the following differential equation:
 (x2 + x y) dy = (x2 + y2) dx  
75 Views

Advertisement
215. Solve the following differential equation:
open parentheses 1 plus straight e to the power of straight x over straight y end exponent close parentheses space dx space plus space straight e to the power of straight x over straight y end exponent space open parentheses 1 minus straight x over straight y close parentheses dy space equals space 0.
72 Views

 Multiple Choice QuestionsShort Answer Type

216.

Solve open parentheses straight x space sin space straight y over straight x close parentheses dy space equals open parentheses straight y space sin space straight y over straight x minus straight x close parentheses dx

82 Views

 Multiple Choice QuestionsLong Answer Type

217.

Show that the differential equation straight x space cos space open parentheses straight y over straight x close parentheses dy over dx space equals straight y space cos space open parentheses straight y over straight x close parentheses plus straight x is homogeneous and solve it. 

74 Views

218.

Show that the differential equation:
left parenthesis straight x space dy space minus space straight y space dx right parenthesis space straight y space sin space open parentheses straight y over straight x close parentheses space equals space left parenthesis straight y space dx space plus space straight x space dy right parenthesis space straight x space cos space open parentheses straight y over straight x close parentheses 

72 Views

Advertisement

 Multiple Choice QuestionsShort Answer Type

219.

Solve:
straight y space straight e to the power of straight x over straight y end exponent dx space equals open parentheses xe to the power of straight x over straight y end exponent plus straight y squared close parentheses space space dy comma space space space straight y not equal to 0

79 Views

220.

Solve:
straight x dy over dx minus straight y plus straight x space tan straight y over straight x equals 0

73 Views

Advertisement